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Resumo

A rede de anonimato Tor é extensivamente usada por journalistas e denunciantes para partilhar informação

sensı́vel de forma segura. Isto levou regimes opressivos a bloquear acesso à rede Tor usando extensi-

vas técnicas de interferência de rede. Pluggable Transports do Tor como o meek ou o obfs4 apontam a

ajudar utilizadores do Tor a lograr censura usando uma ponte para encapsular o tráfego em protocolos

de rede impercetı́veis, como o HTTPS, ou outro protocolo de ofuscação alternativo. No entanto, túneis

encobertos criados desta forma podem ser identificados com alta precisão recorrendo a classificadores

de machine learning. Esta deteção é ainda mais eficaz quando os fluxos de rede estão ofuscados ou

encriptados, visto que apenas precisa de calcular as propriedades estatı́sticas dos fluxos. Este trabalho

propõem o TorCloak, um novo pluggable transport do Tor que oferece alta resistência contra ataques

de análise de tráfego baseados em técnicas machine learning. Para isto, aproveitamos as recentes

inovações em comunicações resistentes à censura para encapsular tráfego Tor em aplicações de vı́deo

baseadas na tecnologia WebRTC. Canais encobertos criados desta forma impedem um censor de

distinguir tráfego TorCloak de tráfego normal WebRTC, mesmo usando técnicas como deep packet in-

spection e classificadores de machine learning. Neste trabalho apresentamos um completo estudo de

instrumentação do protocolo WebRTC assim como o desenho e implementação do sistema TorCloak.

Palavras-chave: Rede de Anonimato Tor, Evasão de Censura na Internet, Transmissão de

dados encobertos em Fluxos Multimédia, Análise de Tráfego
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Abstract

The Tor anonymity network is widely used by journalists and whistleblowers to safely share sensitive

information. This has led repressive regimes to block access to Tor by employing extensive network-

level interference techniques. Tor pluggable transports such as meek or obfs4 aim to help Tor users

in bypassing simple blocking mechanisms by leveraging a bridge to tunnel Tor traffic through either an

inconspicuous carrier protocol, e.g., HTTPS, or an alternative traffic obfuscation protocol. However,

covert tunnels like these can be accurately identified using machine learning classifiers. This detection

approach excels even when the network flows are obfuscated or encrypted as it only needs to compute

the statistical properties of flows. This work proposes TorCloak, a new Tor pluggable transport that offers

strong resistance against traffic analysis attacks based on state-of-the-art machine learning techniques.

To this end, we harness recent innovations in censorship-resistant communication to securely tunnel

covert Tor traffic through video streaming applications based on WebRTC technology. Covert chan-

nels created this way prevent a censor from distinguishing TorCloak traffic from unmodified WebRTC

streams using deep packet inspection or machine learning classifiers. In this report, we present a com-

plete instrumentation study of the WebRTC protocol and the design and implementation of the TorCloak

system.

Keywords: The Tor Anonymity Network, Internet Censorship Circumvention, Multimedia Covert

Streaming, Traffic Analysis
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Chapter 1

Introduction

This thesis addresses the problem of Internet censorship circumvention. It has the objective of bypassing

state-level censorship by establishing a covert channel over WebRTC video streams, to allow the free

access to the Tor Network in regions controlled by oppressive regimes. This covert channel must be

established in such way that the censor cannot actively distinguish it from unmodified WebRTC video

streams, even when deploying advanced traffic analysis techniques. To address these challenges, we

present TorCloak, a new Tor Pluggable Transport the enables the secure transmission of Tor traffic over

WebRTC video streams.

1.1 Motivation

Tor[1] is a widely used overlay network that allows a user to browse the Internet anonymously, without

exposing its IP address to the destination. When a user wants to connect to a web page, an encrypted

path is constructed, passing along at least three servers. The communication is forwarded through said

servers and delivered to the final destination (for example, a web server). Tor implements a protocol

that includes multiple layers of encryption, tunneling the network packets in such a way that no single

server can know the source IP address and the final IP address of the packets. Given these properties,

journalists use Tor to communicate more safely with whistleblowers and dissidents. Non-governmental

organizations use Tor to allow their workers to connect to their home website while they are in a foreign

country, without notifying everybody nearby that they are working with that organization.

Since Tor allows for these kinds of anonymous communication, several state-level adversaries have

started targeting Tor and making strong attempts at identifying and blocking this kind of traffic. There is

a growing sophistication of techniques that censor states can employ to achieve this, such as blocking

IP addresses of Tor relays or using DPI (Deep Packet Inspection) to recognize traffic generated by Tor

clients and blocking it. There are however some advances on Tor’s side also to try to disguise Tor traffic

and avoid this kind of blockage, namely by leveraging the so-called Pluggable Transports [2]. Pluggable

transports such as meek [3] or obfs4 [4] aim to help Tor users in bypassing simple blocking mechanisms

by leveraging a Bridge to tunnel Tor traffic through either an inconspicuous carrier protocol, e.g., HTTPS,
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or an alternative traffic obfuscation protocol. However, recent advancements in traffic analysis [5] have

shown that covert tunnels like these can be accurately identified using machine learning (ML) classifiers.

This is effective even when the network flows are obfuscated or encrypted, as this kind of analysis only

needs to consider the statistical properties of the network flows, e.g., packet lengths, to identify unusual

patterns. Given today’s sophistication of ML-assisted traffic analysis techniques, such attacks present a

real and serious threat, enabling state-level adversaries to detect and block Tor traffic even when using

existing pluggable transports.

In this work, we propose to build TorCloak: a new technology that will allow Internet users to cir-

cumvent Tor blocking and give users unrestricted access to Tor while, simultaneously, preventing these

communications from being detected by government-controlled ISPs. TorCloak will consist of a new

Tor pluggable transport (and surrounding ecosystem) that will establish covert channels between Tor

browsers and TorCloak bridges, which act as proxies to the free Tor network. TorCloak will set up

these covert channels by piggybacking Tor traffic on the video streams of widely-used web conferencing

services based on WebRTC technology, e.g., Whereby.com. Thus, under the guise of a regular video

call, users will be able to freely and stealthily access services like SecureDrop without being blocked or

detected.

To this end, we propose to leverage Protozoa [6], a recent censorship-resistant communication tool

to securely tunnel covert Tor traffic through video streaming applications based on WebRTC technology.

WebRTC is used by many popular video conferencing services for making real-time video calls, e.g.,

Jitsi Meet. Currently, Protozoa can establish high-performing, traffic analysis-resistant covert channels

over encrypted WebRTC streams to tunnel TCP/IP payload traffic to the open Internet. Our idea is

then to harness this capability in our system to securely transmit Tor traffic between Tor clients and

bridges. Covert channels created this way will prevent a censor from distinguishing TorCloak traffic

from unmodified WebRTC streams using deep-packet-inspection (DPI) or statistical traffic analysis, a

cornerstone for the successful deployment of previous pluggable transports.

Our approach also includes the design of a TorCloak bridge distribution infrastructure to accompany

our solution. This will allow Tor users to easily find bridges to connect and use our software. This will

help mitigating one of Protozoa’s practicality issues, in that a Protozoa client was assumed to know a

third-party outside the censored region with whom the client could establish a covert channel with. This

bridge distribution service will allow our solution to scale to a larger amount of users.

1.2 Challenges

In order to provide a secure and inconspicuous covert channel over WebRTC in the presence of a sophis-

ticated traffic analysis-capable adversary, we need to overcome several challenges. The first challenge

of this work is how to encode Tor data across multiple WebRTC implementations. WebRTC has

been currently adopted by numerous services that integrate real-time communication capabilities. This

integration has been greatly facilitated by the simplicity of the JavaScript WebRTC API [7]. This creates

a lot of opportunities to create tools similar to our proposal, but it does also introduce a lot of varia-
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tion on the implementation used. Since WebRTC is an open-source project, each WebRTC-based web

streaming application can implement its own variation of it. We need to encode our covert data while

maintaining the overall structure of the WebRTC protocol, to avoid errors in the client side or possibly in

the WebRTC gateway (explained in Section 3.2). These errors would severely impact our tool’s through-

put as well as make it easier for the adversary to detect out of the ordinary WebRTC video streams

and block them. Secondly, we need to balance performance and resistance against traffic analysis,

since we cannot use the full space of the WebRTC data structure, the throughput of our covert channel

is reduced drastically. There is a inherent trade-off between the bandwidth of the covert channel and

how resistant to errors and traffic analysis it is. It is important to find a reasonable balance so that the

system still has enough bandwidth to allow users to use it for typical Internet tasks. Lastly, we need

design a practical TorCloak bridge distribution service to guarantee a secure and stable support to

our tool. We need to, once again, find the balance between having a system easy to find for any user

that needs it while maintaining some difficulty for a censor to identify it and block it. This is key for the

wide adoption of our system in all kinds of oppressive regimes.

1.3 Contributions

To address the above mentioned challenges, this thesis proposes a new Tor Pluggable Transport named

TorCloak, that will enable the secure transmission of covert Tor communications over WebRTC. In par-

ticular, this thesis makes the following contributions:

• A characterization study of WebRTC and an instrumentation framework for the WebRTC protocol:

our study delivers a detailed explanation on the insides of the WebRTC protocol and how it can

be manipulated to create covert channels. We also provide a debugging toolkit which can be

leveraged by practitioners to understand and develop new information-hiding applications in the

infrastructure of most popular WebRTC-based web streaming applications.

• The design and implementation of TorCloak, a new covert transport mechanism for Tor traffic which

resists against state-of-the-art traffic analysis attacks. TorCloak is compatible with the latest Plug-

gable Transport (Version 3) and fully integrated with the Tor Client, introducing a covert transport

mechanism for Tor traffic, resistant to traffic analysis attacks.

• The design of a bridge distribution infrastructure, necessary to support TorCloak, including a broker

to serve as the meeting point between TorCloak Clients and TorCloak Bridges.

• An extensive experimental evaluation of TorCloak. We evaluate system’s network performance

(throughput and latency) and compare it to other similar systems.
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1.4 Thesis Outline

The remaining of the document is organized as follows. Chapter 2 presents the necessary background

of TorCloak and the related work described in the literature. Chapter 3 shows the studies of the WebRTC

protocol and present the framework needed to instrument it. Chapter 4 describes the complete design

and implementation of our system. Lastly, Chapter 6 presents the result of the experimental evaluation

of TorCloak, and Chapter 7 concludes this thesis.
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Chapter 2

Background and Related Work

Over the last few years, the research community has introduced several advances related to privacy-

enhancing tools (PETs), many aimed at enabling secure and anonymous censorship-resistant commu-

nication tools for the Internet. TorCloak surfaces from this line of work and aims to further improve and

extend the previous tools. In this section, we provide some necessary background on Tor and discuss

the related work involving pluggable transports. We then analyze all of the previous work at the genesis

of this project. Lastly, we cover other kinds of attacks and defenses to the Tor network complementary

to this work.

2.1 Overview of the Tor Anonymity Network

Tor [1] is a circuit-based low-latency anonymous communication network. The basic concept behind

Tor is called onion routing [8], on which a client’s traffic is forwarded through several servers (nodes),

to improve anonymity and reduce the chance of being tracked. This is mainly because each node only

knows its predecessor and successor, storing no data of the original requester. Tor relies on these

nodes - called relays which are mostly maintained by volunteers and forward traffic along a circuit (see

Figure 2.1). Circuits are paths chosen based on predefined policies [9] and are composed of three

relays: an entry, middle and exit relay. To establish a circuit, clients obtain a list of current relays

and then exchange session symmetric keys with each relay in a circuit, one at a time – referred to by

telescoping path-build design [8]. These symmetric keys are valid during the session. Relays discard

keys when the circuit is closed providing perfect forward secrecy. The relay list is made available by

special relays that act as directory authorities. Data that flows between these relays is composed of

fixed-size cells (512 bytes), encrypted by symmetric keys previously exchanged with the client. At a

minimum setting, Tor cells are triple encrypted, once for each relay. Each cell is intended to a specific

relay; upon decrypting it with the correct symmetric key, the relay can check if the cell is intended to

be forwarded to the next relay or a control cell which contains data to be interpreted by the relay (for

example, a HTTP request).

Tor is compatible with the majority of TCP applications without any modifications or kernel require-
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Tor Network

Entry Exit

Alice

Bob

2 layers of encryption

3 layers of encryption 1 layer of encryption

No encryption

Figure 2.1: Example Tor circuit enabling Alice to connect anonymously with Bob.

ments. By providing a SOCKS interface, it allows, e.g., an email client application to be used on top of

Tor without any modifications on the email client itself apart from changing a proxy configuration.

2.2 Tor Bridges and Pluggable Transports

Due to certain censorship-resistant mechanisms offered by Tor, many users living in regions controlled

by oppressive regimes have adopted the system. For this reason, Tor has become a large target of

blockage in such regimes. As explained above, Tor uses relays to forward the traffic, and such relay list

is public. This makes it easy for ISPs to block the IPs of such servers, impeding users from connecting

to them. To overcome this blockage, Tor started employing bridges. Tor Bridges [10] consist of unlisted

proxies, outside of the censored region, whose goal is to forward the user’s traffic to a Tor relay. Thus,

instead of connecting to a potentially blocked relay’s IP address, users connect first to such bridges and

get their traffic routed to one of the available relays. Some bridges are public, deployed by volunteers of

the project and others are private and only known to a few [10].

However, bridges are still vulnerable to traffic fingerprinting attacks. If a user connects to a bridge

using the vanilla Tor protocol, it becomes possible to identify Tor traffic and blacklist that bridge. Matic et

al. [11] show that 55% of public bridges are vulnerable to aggressive blocking. As referred in Section 2.1,

Tor uses a fixed data format, with cells all of the same size. This makes it possible to identify such traffic

and blacklist the bridge’s IP address, just moments after it starts being used. Another way to identify

Tor traffic is based on TLS, used to encrypt Tor communication. TLS uses an extension [12] called

Server Name Indication (SNI). This is used to add the domain name to the TLS header to be used in the

Client Hello handshake phase. This SNI is added before the TLS handshake, and so, is not encrypted,

allowing an attacker to eavesdrop on what domain name the user is trying to reach. Tor inserts a bogus

domain name in this field, following a fixed random string. This property can be uniquely identified as

Tor’s traffic, enabling, once again, censors to block the bridge.

As a defensive technique, Tor employs pluggable transports (PT) [2]. They consist of obfuscation

wrappers that hide Tor traffic between a user and a bridge, to protect against traffic analysis attacks.
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They transform the Tor traffic flow so that censors that monitor the traffic between client and bridge will

see traffic patterns that do not conform to Tor’s networking protocol. Tor Browser already employs a set

of PTs, the most known being the following ones:

• obfs4 [4]: It is the PT with the highest available number of bridges. It provides a level of obfuscation

for an existing authenticated protocol, like SSH or TLS. The obfs4 protocol encrypts all traffic using

a symmetric key shared between the bridge and the user derived from both client’s and bridge’s

initial key [13]. An attacker would only see a randomly encrypted byte stream.

• meek [3]: It uses a technique called Domain Fronting [14]which is the use of different domain

names at different layers. It consists in encoding a legitimate website domain in the SNI and using

the Host field in the encrypted HTTP request to encode the blocked website’s domain. meek does

require a CDN (Content Delivery Network) because a CDN’s frontend server (called an “edge

server”), upon receiving a request for a resource not already cached, forwards the request to the

domain found in the Host header. This means that the censor will see the legitimate allowed

domain but the edge server will request and deliver the blocked website.

• Format-Transforming Encryption (FTE) [15]: FTE transforms Tor traffic to arbitrary formats using

their language descriptions. FTE extends conventional symmetric encryption with the ability to

transform the ciphertext into a format of the user’s choosing, indicated by an inputted regex ex-

pression. Users can then force protocol misidentification across a broad range of Deep Packet

Inspection (DPI) systems.

However, as indicated by Wang et al. [16], these obfuscation tools are still subjected to several

attacks, enabling a censor to successfully detect and block them. Obfs4 and FTE are both shown to

be susceptible to entropy-based tests, with a successful detection rate of nearly 100%. Entropy-based

tests consist of, for a given flow, calculating the entropy of every packet payload and comparing them

with the maximum/minimum/average entropies in packets in each direction (upstream or downstream),

to efficiently detect if a flow has been obfuscated or not. Another tecnhique, using ML-based attacks,

leveraging timing-based features, based on the traffic patterns of meek, the authors were also able to

distinguish meek traffic from typical TLS connections and essentially detect it with a success percentage

of approximately 98%. This is because meek clients will periodically send packets to a meek server, to

check for data to send, creating timing patterns that differ from the typical TLS connections.

Developed with a different goal in mind than the existing PTs, TorK [17] is a new pluggable transport

being developed that aims at eroding the power of traffic correlation attacks [18] that can potentially be

launched by state-level adversaries.

Specifically, TorK prevents a network-level adversary from unambiguously deanonymizing the IP ad-

dress of a Tor circuit creator. This is achieved by enabling K users to voluntarily open a k-circuit. A

k-circuit is a new communication primitive that simultaneously i) connects K participants to an entry

point in the Tor network, ii) tunnels through these connections the traffic of the real Tor circuits created

by the participants, and iii) hide the real identity of the circuit creators by making each connection indis-
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red line. All three members opened a Tor circuit.

tinguishable from one another. Thus, TorK offers the property of K-anonymity for all the participants of a

k-circuit.

Figure 2.2 conveys this idea by depicting deployment of TorK in a simple scenario involving three

users. The system itself consists of two components that interact with the Tor infrastructure: a gateway

and a bridge. The gateway is software that runs on the users’ local computers and acts as a client

towards the bridge. The bridge, in turn, consists of a standalone server that accepts connections from

one or multiple client gateway instances. Gateway and bridge implement a Tor pluggable transport and

work together to exchange traffic between the Tor client software running on the users’ computers and

the Tor network. By leveraging the pre-existing Tor infrastructure and APIs – i.e., bridge and pluggable

transports – TorK is fully compatible with Tor.

The figure illustrates how three users – Alice, Bob, and Charlie – can help each other to prevent

a network-level adversary from finding out which websites each of them is individually accessing over

the Tor network. They begin by running the TorK gateway software on their computers and request

the establishment of a k-circuit where k = 3 participants. Each gateway opens a channel with the TorK

bridge. We call each of these channels a segment of the k-circuit. Once all three segments are ready, the

bridge instructs the gateways to authorize the local user to access the Tor network. Bob, for instance,

can now open the Tor browser and access the BBC website. The Tor browser locally connects via a

SOCKS interface to the Tor client software which in turn creates a Tor circuit through which the HTTPS

request to bbc.com is sent. The resulting Tor circuit payload is tunneled via the k-circuit segment that

connects Bob’s gateway to the bridge. Similar to Bob, Alice and Charlie are also free to access the Tor

network and create their circuits through which the traffic to cnn.com and euronews.com, respectively,

can be tunneled.

However, TorK was designed to enhance the anonymity of Tor circuits, not Tor’s censorship resis-

tance capability, which is the goal of our project. Given that TorK exchanges standard Tor messages

between client and bridge, an adversarial ISP observing the client’s communication can immediately

detect the traffic and block it. Unfortunately, the remaining PTs presented above offer limited protection

against ISPs that employ traffic analysis techniques based on machine learning classifiers to differenti-
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Figure 2.3: DeltaShaper architecture.

ate between regular traffic and the PT-generated traffic [5]. In contrast, TorCloak aims at being robust

against these attacks by leveraging the latest generation of multimedia covert streaming techniques.

2.3 The Early Stages of Multimedia Covert Streaming

Over the last few years, several censorship-resistant systems have been proposed and prototyped by

the scientific community, as a way to share and access blocked information on the Internet. In particular,

an approach that has garnered considerable attention is called multimedia covert streaming [19]. Its

general idea is to rely on covert channels to allow for the stealthy transmission of sensitive data through

an apparently innocuous multimedia stream.

FreeWave [20] was one of the first tools to implement multimedia covert streaming. It allows users to

encode covert data into the acoustic signal of Voice-Over-IP (VoIP) connections, using Skype. However,

FreeWave is vulnerable to traffic analysis attacks since the packet length distribution of the traffic con-

taining covert messages is nothing similar to that of a normal human speech communication through a

Skype call.

The next step in the evolution of multimedia covert streaming was to use the video signal for estab-

lishing covert channels. Facet [21] enables tunneling censored videos through video calls of applications

such as Skype. To prevent detection of the covert channel, this tool embeds the censored video in a por-

tion of each video frame, filling the remaining space with a legitimate conversation video, to enable the

traffic pattern to be similar to the one produced by a legitimate call. This approach provides active attack

( when an attacker attempts to modify or alter the content), resistance by design, since any perturbation

in the network will cause the same effect on a regular or covert video transmission. When compared with

FreeWave, Facet [21] provides greater resilience to both active and passive attacks (when an attacker

observes and monitors the contents).

Facet’s insights have been further explored by the development of DeltaShaper [22], a tool that offers

data-link interfaces and supports TCP/IP applications that tolerate low throughput and high latency links.

Figure 2.3 represents the architecture of the system illustrating the covert traffic exchange between the

endpoints of a networked application. On the sending side, the transmitter receives the payload and

encodes it in a video stream that is fed to Skype using a virtual camera interface. Skype transmits

this video to the remote Skype instance and the received stream is captured from the Skype video

buffer. A decoder then extracts the payload from the video stream and delivers it to the application. The

same procedure is applied at both endpoints of a Skype call, thus, effectively, supporting a bi-directional
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channel in this way.

The main challenge tackled by DeltaShaper is how to encode covert TCP/IP data into the video

frames of a Skype call while maintaining unobservability, which consists in the ability of a user to use a

service without third parties being able to observe that the service is being used, while also maintaining

reasonable throughput. To achieve high throughput, we would ideally use as many bits as possible from

the video frame. However, doing this might bring some problems: almost every video streaming appli-

cation does some kind of compression, using some technique to reduce the number of bits sent. This

means that DeltaShaper’s covert data bits embedded in the video frame may be lost due to compres-

sion. Besides that, encoding an excessive number of bits into the video frames will most likely generate

a network stream pattern much different from a typical Skype call, which will break the unobservability

goal.

To overcome these challenges, DeltaShaper uses a custom data encoding scheme based on the

following ideas:

• Blend carrier frames and payload frames: to mimic the network traffic of a normal Skype call,

payload frames – i.e., video frame segments that encode the covert TCP/IP data to be sent – are

blended (overlapped on the top-left corner) into the carrier frame. Carrier frames can be obtained

from pre-recorded, typical Skype calls or a live webcam video feed.

• Support tunable payload frame encoding: A payload frame is composed of one customizable

payload block, which has a grid of cells. Each cell has a contiguous fixed-size area of pixels. The

color code of the pixels is used to encode the bits of information of the payload block. The encoding

scheme is defined by these parameters: size of the payload frame in pixels (ap), size of the cells

in pixel (ac), number of bits for color encoding (bc) and the payload frame rate (rp).

The parameters mentioned above can be tuned to improve DeltaShaper’s resilience to color changes

introduced by Skype or to mitigate the video compression effects. The values used in DeltaShaper that

strike a balance between these factors are: (ap,ac,bc,rp) = (160x120,4x4,1, 3). With these numbers,

we can calculate the maximum number of bits we can send per frame (N ), as well as the maximum

throughput for the defined frame rate: 160x120 pixels, which gives us a total of 1200 cells per frame.

Since we have 1 bit (binary black-white image color code), the payload block is N = 1200 bits. With

three frames per second, this gives it a throughput of 3.6Kbps. This means that the performance of

DeltaShaper’s covert channels is relatively low, limiting the breadth of client applications that this tool

can sustain. In particular, this limitation hinders the transmission of payloads from low-latency anonymity

networks such as Tor.

2.4 Encoded Media Tunneling

Prior work on DeltaShaper has shown that the lack of control over Skype’s multimedia pipeline hinders

the ability to create covert channels that simultaneously provide high throughput and strong resistance

against traffic analysis. In fact, by using machine-learning (ML) to perform traffic analysis, censors can
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Figure 2.4: WebRTC covert tunnel over a Whereby call.

detect small deviations in the packets, such as packet size or timing, and effectively distinguish normal

video streams from streams with covert data embedded. While DeltaShaper can tolerate such attacks

to some degree, the channel performance ends up being highly sacrificed.

Protozoa [6] is a new tool that aims to fix both of these problems, by using web streaming application-

based WebRTC, creating a covert tunnel between the user located on the censored region and another

one (e.g. a friend) on an uncensored region. Protozoa employs a technique named encoded media

tunneling which consists of embedding the covert data into the already encoded video frames, after, for

example, a lossy compression algorithm has been applied. This allows it to highly boost the bandwidth

of the covert channel, since, unlike DeltaShaper, no redundancy is required since the data will not be

going through any kind of compression algorithm after.

The general operation of Protozoa can be grasped with the help of Figure 2.4 which shows two

Internet users. One of them (the client) is located in a censored region where the access to certain

content or services (e.g., Youtube) is blacklisted by a state-level censor who can inspect and control

all the network communications within its perimeter of influence. The client intends to overcome these

restrictions and access blocked content without the censor’s awareness. This will be achieved with the

help of a trusted user (e.g., a family member) located in the free Internet region who will act as a proxy.

Protozoa creates a high-performance covert channel (≈1.4Mbps) between the client and the proxy

such that the former can transparently tunnel through all the IP traffic generated between local networked

applications (e.g., a web browser) and remote Internet destinations (e.g., Youtube). To create such a

covert tunnel, the two users must establish a video call using a WebRTC-enabled streaming website,

such as Whereby (https://whereby.com). As it is common in such services, one of the users must

first create a chatroom, obtain a corresponding URL identifier, and share that URL with the other user

via some out-of-band medium (e.g., SMS or email). Upon receiving that URL, the invited user can

then join the chatroom and a video call is initiated. At this point, the WebRTC stack implementation of

each of the users’ browsers engages with the Whereby servers into the execution of WebRTC-specific

signaling protocols that guarantee the authentication of both communicating peers and the integrity

and confidentiality of the ensuing peer-to-peer encrypted video transmission between them. Given that
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WebRTC [23] is a W3C standard and is built in all major browsers, Protozoa can be generally used and

adapted to several applications that follow this standard for video conferencing.

Figure 2.5 depicts the architecture of Protozoa and shows Alice (client) executing a local application

for accessing cnn.com using Bob’s computer as a proxy. The carrier application consists of a web appli-

cation that uses the WebRTC protocol for providing a point-to-point live streaming service between its

users, e.g., Whereby. Typically, such an application consists of a backend that handles the signaling and

session establishment of video calls between participants, and client-side JavaScript & HTML code that

initiates video calls and manages the video transmission via the WebRTC API provided by the browser.

The resulting media stream will be used by the system as the carrier for a covert channel.

Protozoa’s software bundle targets the Linux platform, and it is set up differently to work as a client

or proxy by two participating parties. The client will be able to execute unmodified IP applications whose

traffic can seamlessly be routed through the WebRTC covert channel by the proxy to destination hosts

anywhere in the free Internet region. The software bundle itself is composed of four components:

1. Gateway server : responsible for the setup and management of a point-to-point WebRTC covert

channel between two parties. It is built out of a modified Chromium Browser [24] and uses two

hooks - upstream and downstream to intercept outgoing and incoming WebRTC streams.

2. Encoder service: responsible for encoding streams of IP packets generated by local networked

applications.

3. Decoder service: perform the reverse operation of the former, reading incoming messages and

extracting the enclosed IP Packets and then writing them to a raw socket to be routed to its final

destination on the Internet.

4. SOCKS proxy server : executed only on the proxy server, it exposes a network interface configured

with an IP address for which all of the upstream IP Packets (sent by the client in the censored

region) are routed; therefore, all of the packets are transparently delivered to the SOCKS proxy

and then delivered to the final destination, e.g., a remote Internet website.

As pointed out above, Protozoa replaces the bits of the encoded video signal after the input has

been compressed by the WebRTC video codec, helping to increase the capacity of the channel, as well

as its resistance against traffic analysis. It does this by leveraging two hooks built into the WebRTC
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stack – upstream and downstream – which can, respectively intercept outgoing frame data after being

processed by the video engine, and intercept incoming data frames right after the transport layer has

reconstructed an encoded frame.

Having this design allows Protozoa to have the following advantages: it can achieve a channel

bandwidth capacity in the order of 1.4 Mbps while providing strong resistance to traffic analysis. The

evaluation results showed that if a censor would like to block 80% of all Protozoa flows it would erro-

neously flag approximately 60% of all legitimate traffic. This shows that distinguishing between Protozoa

streams and legitimate streams is close to random guessing. It also relies on the fact that blocking the

WebRTC protocols altogether (blocking Protozoa usage) would lead to significant collateral damage

for a censor: media streaming applications, specially these days, have a fundamental importance in a

country’s economy and social relations. Protozoa does however have its limitations as well: On its own,

Protozoa cannot perform the discovery of trusted proxies. It relies on the user inside the censored region

to know a contact outside of the censored region, in who he can trust and rely on to be his proxy. It does

not possess any mechanism that matches users to proxies in an automated way. It is also incapable of

detecting Sybil nodes, state-level attackers impersonating users of the system in order to infiltrate the

system and track down legitimate users.

2.5 Enhancing WebRTC Covert Channels with Video Steganogra-

phy

Using the same basis of Protozoa, Stegozoa [25] is a more recent attempt at enhancing WebRTC covert

channels using video steganography. Like Protozoa, it leverages WebRTC video channels to create its

covert channel. However, unlike Protozoa, Stegozoa does not operate under the assumption that the

participants of a videocall exchange media in a peer-to-peer fashion. If that was the case, given that

peer-to-peer connections carrying the video streams are encrypted end-to-end, not even a state-level

adversary with unrestricted access to the network infrastructure would be able to observe the raw video

content of these WebRTC streams. Unfortunately, a myriad of WebRTC application challenge this as-

sumption by relying on WebRTC Gateways (see 3.2): specialized servers that mediate the transmission

of media streams between the participants engaged in a videocall for scalability and performance pur-

poses. The point in fact is that, other than blindly relaying media packets between participants (as in the

case of TURN servers [26]), WebRTC gateways have the ability to decrypt, validate, and perform arbi-

trary operations on incoming media streams [27]. Evidence suggests that popular WebRTC services,

like Discord, do make use of WebRTC gateways to inspect audio data exchanged by users [28].

Unfortunately, this means that Protozoa users can be trivially detected if they make use of web

conferencing services that leverage WebRTC gateways controlled by an adversary, e.g., when using

a domestic video-conferencing infrastructure under the control of a censor. This risk exists because

Protozoa encoded video frames can be clearly identified as they carry arbitrary covert data payload that

fails to adhere to the specification of media codecs.
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Stegozoa is a novel tool for circumventing Internet censorship that provides a messaging exchange

service offering reasonable throughput for the surreptitious transmission of covert data over WebRTC

video calls. It can withstand traffic analysis and media steganalysis attacks launched by state-level

adversaries in control of WebRTC gateways. To meet this goal, Stegozoa creates covert channels by

augmenting the WebRTC encoding pipeline with the ability to steganographically embed covert data into

the compressed representation of WebRTC video frames.

Figure 2.6 depicts the architecture of Stegozoa. The system itself consists of a gateway service

composed of three main elements: an API, the libstegozoa library, and a set of media interception

hooks located inside a modified Chromium Web browser (similar to Protozoa). The coordinated inter-

action of these elements, acting at different abstraction layers, allows Stegozoa to establish a covert

channel between two users – Alice and Bob – and stealthily exchange messages through this channel.

A client application running executed at each communication endpoint offers a user-friendly interface for

sending and receiving messages through the API exposed by the Stegozoa gateway.

Like Protozoa, for establishing covert channels, Stegozoa instruments the media pipeline of WebRTC

video conferencing applications. These applications, for instance Jitsi Meet, rely on JavaScript code that

executes in users’ browsers as part of the WebRTC framework for performing peer discovery, signalling,

and calling establishment operations. Users’ browsers are also responsible for encoding, transmitting,

and decoding media data relying on WebRTC’s native C++ implementation, enabling call participants

to exchange media streams. In the context of Stegozoa, these media streams (video streams in par-

ticular) will be forwarded between call participants via a WebRTC gateway while acting as a carrier for

steganographically-marked covert data.

Figure 2.7 illustrates how two users, Alice and Bob, can establish a covert communication channel

using Stegozoa to exchange some sensitive content, e.g., news articles. First, Alice accesses a given

WebRTC video-conferencing service, like meet.jit.si, creates a chatroom (A1), and shares the cha-

troom’s URL (A2) with Bob (B1), using some out-of-band channel, e.g., e-mail. Likewise, Alice and
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Bob also exchange a shared secret – this secret will be used to bootstrap Stegozoa’s steganographic

encoder. Then, both Alice and Bob join the chatroom (A3 and B2) and start transmitting video con-

tent. Note that while access to the chatroom may also be protected by a password, the adversary, has

described before, is already assumed to possess the ability to visually and programmatically inspect

the media exchanged by Alice and Bob. Once the media session is in place, Alice and Bob invoke

Stegozoa’s initialize API call (A4 and B3) to bootstrap their local Stegozoa endpoints. As part of

Stegozoa’s bootstrapping process, libstegozoa will generate and broadcast discovery packets, special

control packets that will be steganographically marked in video frames and which will act as a partici-

pant’s presence beacon. Other Stegozoa participants who listen to this beacon will then reply with their

participant ID in a response packet. Then, the sender of the discovery packet will collect the observed

replies and register the current Stegozoa peers’ IDs. In our example, after peer discovery is finished,

Bob can list his current peers’ IDs by issuing the getPeers API call (B4). Armed with the information

that Alice’s ID is equal to 1, Bob can now send a message to Alice by invoking the send API call (B5).

Finally, Alice will be able to receive Bob’s message after automatically invoking Stegozoa’s receive API

call (A5).

The described mechanisms allow Stegozoa to achieve an average throughput of 8.2 Kbps, sacrificing
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a higher throughput for a stronger threat model. It also allows it to highly resist traffic analysis attacks,

obtaining a maximum AUC of only 0.6, meaning a censor willing to block 50% of all Stegozoa streams

(TPR = 0.5) would erroneously block about 40% of legitimate WebRTC streams (FPR = 0.4). Further-

more, it also provides resistance against video steganalysis: with proper configuration, the classifier was

only able to obtain a value of 0.6 for the AUC.

2.6 When WebRTC meets Pluggable Transports

As referred in Section 2.2, a continuous effort is being made by the community to further increase the

number of Tor Pluggable Transports, to enable free internet access in censored regions. Seeing the

potential in WebRTC to perform covert data transfer, as explained in Section 2.4, a new Tor pluggable

transport, developed by the same author as meek [3], appeared, under the name of Snowflake [29, 30].

Snowflake is based on peer-to-peer connection through proxies that run in web browsers, that anyone

can easily deploy.

Snowflake’s main design is composed of three main components:

• many snowflake proxies, which perform the communication over WebRTC between with the client

and forward their traffic to the bridge.

• a broker, which consists of a database that matches clients and proxies.

• a Tor bridge, consisting of a full-featured proxy capable of connecting the user’s traffic to its final

destination.

The basic functioning of Snowflake is the following: a client i) sends the broker a message containing

their IP address and other metadata necessary to establish a WebRTC connection. The broker then ii)

finds an available snowflake proxy (previously registered) and forwards the client’s message to it, which

iii) sends back its answer containing the necessary information as well. The broker then iv) forwards the

proxy’s response to the client. After this, a WebRTC connection can be established between client and

proxy. The proxy then connects to a bridge to forward the client’s traffic. Snowflake’s blocking resistance

relies on having a large number of deployed proxies. Since it allows for a client to easily change from

one proxy to another, if a censor manages to block the IP address of one proxy, another proxy will

quickly take its place. However, a problem still arises from this design. The original request, from client

to a single broker, to request the attribution of a proxy, is still subjected to blockage since the broker is

a single server. Well, Snowflake solves this issue by making this initial request use a technique called

domain fronting (explained in Section 2.2), which consists of encoding a legitimate website domain in the

SNI and using the Host field in the encrypted HTTP request to encoded the blocked website’s domain,

in this case, the broker’s domain. This is the basis of meek pluggable transport. The difference here is,

while meek uses this technique exclusively for all of the client’s traffic, incurring in high monetary costs

necessary to deploy it, Snowflake offloads most of the data transfer to WebRTC, significantly reducing

the costs.
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While tackling the problem of detection by address, Snowflake is however still susceptible to fingerprint-

based attacks, by using machine-learning to perform traffic analysis. Similar to Protozoa, Snowflake’s

final goal is to create a data flow similar to other WebRTC applications, making it very hard to detect.

But, unlike Protozoa, which uses WebRTC media channels to encode its covert data, Snowflake en-

codes its data into the data channels of WebRTC. This means that, despite both being encrypted, an

observer can easily distinguish a media channel from a data channel. This can lead to blockage when

an unusual amount of traffic from a data channel is detected since, in the usual uses of WebRTC (e.g.

video calls), most of the data is transferred via media channels.

Furthermore, as acknowledged by the author and the Tor Team, Snowflake contains some features

that allow it to be potentially identified [31] by a state-level adversary. The added setup costs brought

by the use of domain fronting, while reduced, still also represent a clear disadvantage to the system. In

contrast, TorCloak aims at further reducing the chances of detection by a traffic analysis attack while still

maintaining an easily deployed infrastructure and software.

2.7 Emerging Mobile Privacy-Enhancing Technologies

Since the introduction of the first smartphone in 2007, millions of people now run around daily with

these devices, counting on them for their everyday tasks and more. Following this uprising, a plethora

of useful services are delivered to these users via mobile applications. These applications can be

obtained easily through what are called app stores, which contain thousands of applications ready to be

installed. In many ways, these technological advances greatly facilitate our lives and improve our day-

to-day activities. However, another side of the coin must be made aware. All of this ease of use comes

with some security and privacy risks. Firstly, smartphones these days, to facilitate their users’ lives,

collect and store a lot of personal data, which is sometimes not properly stored and intentionally shared

for profits [32, 33]. Secondly, with such a large market, app developers and companies constantly,

intentionally or not, put users’ privacy at risk, since Android’s open design allow for a zero-permission

app to easily infer the presence of specific apps, or even collect the full list of installed apps on the phone

through standard APIs [34].

Due to all of these growing problems, the research community has started directing a great amount

of effort to develop Privacy-Enhancing Technologies for mobile platforms, to offer solutions to safely and

anonymously collect user’s data, as well as to be able to use your mobile device in a more safe and

private setting. One of those tools, Opaak [35] uses a cryptographic mechanism called anonymous

credentials [36–38] to define a series of protocols that allow users to demonstrate possession of a

credential granted by a trusted authority without revealing anything other than the fact that they own

such a credential. This can be particularly helpful in websites that count on votes, ratings, reviews, and

recommendations, such as IMDB, Yelp, and Amazon.

Specifically, Opaak supports anonymous single sign-on (SSO) authentication and anonymous mes-

sage boards. A user can use their phone number to register with an anonymous identity provider (AIP)

and thus acquire an anonymous credential. The anonymous credential forms the basis for users to cre-
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ate cryptographic proofs that enable them to anonymously authenticate to relying parties so they can

use the services they offer, being of login or making any kind of comment, post, or others.

On this topic, two other notable digital identity management (DIM) frameworks are OpenID [39] and

Microsoft’s CardSpace [40]. They primarily focus on allowing users to consolidate and manage their

digital identities, not offering anonymity from relying parties like Opaak.

Another framework that uses anonymous credentials is Privacy and Identity Management for Europe

(PRIME) [41], an ongoing effort to develop a comprehensive framework for privacy for the web and its

applications, although it’s far more complex and contains a lot more components to reach its wide scope

of design goals. PRIME also focuses on managing the identity attributes (e.g., age, sex, marital status)

of users and allowing them to selectively disclose these attributes to relying parties.

VeryIDX [42] is a similar system to PRIME, also focusing on providing identity attributes to relying

parties. They achieve this by using their aggregate zero-knowledge proof protocol based on an aggre-

gate signature scheme by Boneh et. al [43]. Similar to Opaak, they also store the secrets on the user’s

phone.

However, all of these tools, while striving to maintain privacy and anonymity, fail to protect the user

against network-based attacks on anonymity such as correlating the IP addresses or even blocking the

users’ access to such anonymity-driven services. TorCloak aims to help surpass this issue by further

strengthening users’ privacy and anonymity online by providing strong resistance against traffic analysis

attacks. Hopefully, combined with some of the previously mentioned work, it will allow for a more private

internet use.

Summary

In this chapter, we started by introducing the notion of the Tor anonymity network and their main enti-

ties. We then introduced Tor Bridges and Pluggable Transports as the main techniques to fight Internet

censorship. Next, we discussed some multimedia covert streaming systems, with focus on Protozoa,

giving a brief rundown of the WebRTC protocols used by Protozoa for establishing the covert channel.

Lastly, we presented some of the emerging mobile PETs in the literature. In the next chapter, we will

discuss the WebRTC protocol in more details and give an overview of our instrumentation framework for

the protocol.
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Chapter 3

Instrumentation Framework for

WebRTC and VP8/VP9

In this chapter, we present a detailed explanation our for instrumentation framework for the WebRTC

Code Stack. It begins by taking a deep dive into the WebRTC protocols ( Section 3.1), followed by the

introducing of the concept of WebRTC Gateways (Section 3.2). Then, in Section 3.3 we detail WebRTC’s

video encoding and decoding flows, understanding the difference between several data structures and

processing methods. Lastly, Section 3.4 describes our implementation of the instrumentation of these

video flows.

3.1 A Deep Dive into WebRTC Protocols

WebRTC [23], short for Web Real-Time Communication, is an open-source web-based framework,

which allows exchanging real-time media directly between browsers. WebRTC is integrated directly into

the user’s browser, requiring no additional plugins or browser extensions. Most browsers have built-in

support for WebRTC, allowing for the use of this technology by any web application.

WebRTC is basically a set of protocols joined together. We will now explain in more detail the inter-

nals of WebRTC, concentrating on four main phases of the protocol: Signaling, Connecting, Securing

and Communication. In Figure 3.1 we can see an overview of the WebRTC protocol stack.

Signaling: At the start of the connection, a peer (i.e., the initiator of a video call) does not know where

to find the other peer nor what kind of information they will exchange (e.g., the media codecs used to

exchange video), so a discovery procedure must be made. The signaling protocol is not standardized in

WebRTC, granting developers the freedom to use a signaling protocol of their own choice in WebRTC

applications. An example of a popular signaling protocol is SIP [44]. SIP uses an existing protocol

called SDP (Session Description Protocol) [45], a key-value protocol. SDP is constructed in a text-

based format and is used to announce and manage session invitations by sending information like the

media capabilities and supported codecs of the browser, IP address, port number, and media exchange
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Figure 3.1: WebRTC protocol stack.

protocols, bandwidth usable for the communication and authenticity data. The signaling phase works in

an Offer/Answer manner, with one of the peers making an offer (initiating the call) and the other providing

an answer (for example, by rejecting some codecs or limiting the bandwidth) – starting the negotiation

of the session characteristics. SDP also provides the necessary information (authenticity and integrity

data) for the establishment of a direct connection between the peers, needed for the next phase.

The signaling phase requires the existence of dedicated third-party infrastructure (for example, a SIP

server), accessible to both peers, for the exchange of metadata to occur. As shown in Figure 3.2, Alice’s

and Bob’s browsers first contact the signaling server to establish a direct connection. The infrastructure

needed for the signaling phase is the responsibility of the WebRTC application.

Connecting: This phase deals with the establishment of a direct bidirectional connection between

the two peers. Establishing such a connection is far from trivial: the peers are usually in different

networks, behind a NAT (Network Address Translation), with no direct connectivity; negotiation of IP

versions, as many devices still do not support IPv6. WebRTC makes use of another existing protocol –

ICE [46] (Interactive Connectivity Establishment) – in order to solve the above challenges. Peers start

by querying STUN servers for their public IP addresses (unless the direct connection is possible right

away, e.g., the peers are in the same network), programmatically create NAT mappings, and send the

mapping information to other peers. If the direct connection is still not possible (e.g., the NAT device

creates a different mapping for each destination address, making it impossible to reuse an existing one),

ICE falls back to using a TURN server. The TURN server has the responsibility of relaying the traffic

between the peers and overcoming the limitations of NAT devices. When a remote peer gets traffic, they

see it coming from the TURN server, although the server can not inspect its content; as we will see in

the next phase, the traffic is encrypted. The WebRTC application usually provides the TURN servers.

Securing: WebRTC uses DTLS (Datagram Transport Layer Security) [47] in order to establish a secure

channel. DTLS is a variant of TLS, functioning over UDP instead of TCP. The secure channel is created
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by exchanging session keys with DTLS, which are then used by another protocol – SRTP (Secure Real-

time Transport Protocol) [48]. SRTP is responsible for encrypting RTP packets (explained in the next

phase), providing confidentiality, integrity, authenticity, and resistance against replay attacks to the media

packets exchanged between the two peers.

Communicating: This phase concerns itself with the exchange of media content. It also handles prob-

lems or dynamic changes to the call’s conditions, like bandwidth decrease or packet loss. Two existing

protocols are used, RTP (Real-Time Transport Protocol) and RTCP (RTP Control Protocol) [49]. RTP

has the job of transporting media content (audio and video streams). It allows one or multiple streams,

guarantees reliable delivery and adapts dynamically to the network conditions. This is achieved thanks

to the assistance of RTCP, which exchanges control information and metadata about the call [50, 51].

RTCP informs the peer of possible problems in transmission, delays, packet loss and other conditions

so that the exchange of packets can be adapted and optimized. RTCP is also useful for debugging

purposes, as any error in the sending of packets generates a specific RTCP report.

Now that we explained the WebRTC protocol and seen how a secure session between two peers

can be established, we will discuss in more detail the WebRTC architecture and how it handles multiple

clients in heavy media sessions.

3.2 WebRTC Gateways

As mentioned, WebRTC calls are, by default, peer-to-peer: that is, every peer sends its video and audio

stream to every other peer, in a mesh-like configuration. However, this type of solution is not scalable

beyond a few participants [52, 53]. Another major problem of WebRTC peer-to-peer calls was IP address

leakage [54, 55]. As it obvious, for the basis of WebRTC to work each peer must know the other peers’

IP address in order to establish a connection. In the early days of the Internet this might not have

been a problem, but now, with all of the user’s concerns with privacy, it’s a huge deal. You might not

want to share your IP address with your video call peer or peers. In order to solve these problems, most

popular WebRTC services use media servers, called gateways, to protect and scale video calls for many

participants [56].

These are usually called WebRTC gateways: media servers that become a central management
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Figure 3.3: Simulcast: the SFU sends the appropriate stream to each participant.

machine for the video call, communicating with each peer individually. This configuration allows each

peer to send their stream to the central server instead of sending to every other peer. It highly reduces

resource consumption and avoids a direct connection between each peer, avoiding possible IP address

leakage. Basically, each participant has a connection with the gateway.

There are two main configurations of gateways used by popular WebRTC services:

• MCU (Multipoint Control Unit) [57]: a server which mixes all of the incoming stream of the multiple

peers connected to them and sends back a single stream to the participants, using a topology

called Point-to-multipoint. Each participant only needs to send it’s audio and video to one place

and receives the mixed audio and video of the remaining participants. This mixed stream can be

different and configured differently to each one of the participants - this results in heavy server-side

computing, making it not so popular for most WebRTC services [58].

• SFU (Selective Forwarding Unit) [59]: the most used approach, based on a technique known as

simulcast [60]. SFUs implementations vary but most can implement different techniques to man-

age the audio and video streams of each peer according to their connectivity and hardware. This

solves one of the biggest issues of modern days videoconferencing, that is adapting the video

stream to everyone’s network and computer capabilities. SFUs allow different peers to have dif-

ferent speeds/resolutions of video streams according to their network’s capabilities, as shown in

Figure 3.3. Simulcast uses a technique called Scalable Video Coding (SVC) [61], available in

several video codecs. It basically consists of a video stream encoded in the form of embedded bit-

stream structured in layers, allowing to select and/or decode more or less of this layers. Depending

on the number of layers, a different quality video is generated.

It is however important to note that WebRTC gateways implementations are not always exactly like

the described implementation - different WebRTC services adapt their implementation according to their

needs and infrastructure, not following any specific implementation standard, as we noted during our

testing, and will now describe. Most WebRTC services do not exactly publish how their services work

internally and do not share implementations of their gateways. This makes it hard for developers and

testers to make use of their structure, since it basically becomes a black box. In the next section we will

describe our process to instrument WebRTC.
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3.3 Understanding WebRTC Video Frame Flows

WebRTC is built on top of an open standard. It’s a collaboration between several people and entities.

It is also constantly growing and being developed in several different programming languages. For this

reason, specially for someone who is not familiarized with WebRTC, it’s particularly hard to find specific

documentation about the code and it’s flow, without actually following the code function by function. For

this particular reason, we had the need to create an instrumentation tool that would allow us to better

understand and debug the whole WebRTC C++ Code Stack. This tool will serve as a complement to the

already existing WebRTC statistical and logging capabilities [62].

One of the first important steps to master WebRTC is to figure out the actual flow the program takes

during a videocall. This allows us to visualize each function and better understand where certain errors

may be occurring. To do this, we placed several variables across the WebRTC function following its

function calling. This allowed us to reconstruct two of the main flow paths of WebRTC, as shown in

Figures 3.4 and 3.5: receiving and sending of video frames and packets. These two flows are crucial

in our context and in the development of similar multimedia covert streaming tools based on WebRTC.

They allow us to know when to intercept the already encoded video frames and replace it with covert

data, without inducing errors due to verification mechanisms that could result in the discarding of frames.

It also important to note two key definitions to understand the flows. There are two types of data

structures used in WebRTC sending and receiving:

• RTP Frames: actual encoded video frames, with a larger size, already processed by the video

engine and codec and ready to be sent

• RTP Packets: pieces of video frames, with a reduced size. They are sent through the network

and reconstructed in the receiver end to create a video frame again.

The tool is composed of several simple incremented counters, as shown below, placed in different

locations of the WebRTC code stack, and incremented each time that piece of code runs.

// Frames

std::atomic<uint32_t> global_frame_receive_counter = 0;

std::atomic<uint32_t> global_frame_send_counter = 0;

std::atomic<uint32_t> global_dropped_frames_congestion_window = 0;

std::atomic<uint32_t> global_dropped_frames_media_optimization = 0;

std::atomic<uint32_t> global_dropped_frames_by_encoder = 0;

std::atomic<uint32_t> global_dropped_frames_by_source = 0;

std::atomic<uint32_t> global_dropped_frames_size = 0;

std::atomic<uint32_t> global_dropped_frames_by_encoder_queue = 0;

std::atomic<uint32_t> global_dropped_frames_by_decoder = 0;

// Packets

std::atomic<uint32_t> global_packets_sent = 0;
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std::atomic<uint32_t> global_packets_received = 0;

std::map<uint32_t, int> ssrc_counter;

std::map<uint32_t, SsrcChange> ssrc_change_tracker;

uint32_t last_ssrc= 0;

This variable allow not only to confirm the path of execution of the WebRTC program but also to check

for possible errors in frame or packet processing, why these errors are occurring and detect whether

they are locally generated or possible due to the presence of a WebRTC gateway.

3.4 Instrumenting the WebRTC Receiving and Sending Flows

Start

RTP Packet
Network Input 

Call::
DeliverPacket()

RtpVideoStreamReceiver2::
OnRtpPacket()

RtpVideoStreamReceiver2::
ReceivePacket()

RtpVideoStreamReceiver2::
OnReceivedPayloadData()

RtpVideoStreamReceiver2::
OnCompleteFrames()

RtpVideoStreamReceiver2::
OnAssembledFrame()

RtpVideoStreamReceiver2::
OnInsertedPacket()

FrameBuffer2::
InsertFrame()

Call::
DeliverRTP()

RtpDemuxer::
OnRtpPacket()

VideoReceiveStream2::
OnCompleteFrame()

Debug Hooks for RTP Frames

Debug Hooks for RTP Packets

Figure 3.4: WebRTC Receive Flow.

In Figure 3.4 we can take a deeper dive into the receiving of a frame in the WebRTC Code Stack:

1. The first step is to retrieve the actual packets from the host’s network and construct or RTP Packets.

2. The packets are then routed through several functions for processing until they are actual recon-

structed into frames and fed to RtpVideoStreamReceiver2::OnAssembledFrame()
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Figure 3.5: WebRTC Send Flow.

3. Finally, right before being routed outside of WebRTC’s control and onto the actual screen of the

user, the frames are inserted into a buffer to then be routed to the user’s scren

The key point to retrieve here is that we want to make sure that our counters are placed right on

each edge of the WebRTC path. What we mean by this is we want to make sure that we can account

for a packet right as it enter the WebRTC scope and account for a frame right before it leaves the scope

of WebRTC. This way we can make sure that any possible errors or packet loss that occurs inside of

our host’s WebRTC scope we can detect and understand why. It also makes sure that if the packet loss

or any other error is due to some outside entity not related to our host, we can be aware of that. For

example, if we see that in our sender end we are sending 10 packets to the network but only receiving

5 in the receiver end of the WebRTC scope, we are sure that any possible issue that is occurring is

unrelated to WebRTC itself.

In Figure 3.5 we can analyze the sending flow of a frame in the WebRTC program flow:

1. The first function will receive a video frame from the input device, which could be a webcam or

some virtual emulator.

2. WebRTC will then process the frame and encode it according to the configured video codec, in

this example, VP9.
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3. After the encoded process has been done, the frame is ready to be sent through the network.

4. The frame is then transformed into multiple packets that can then be sent through the network onto

the receiving end.

We can also see that we have placed counters in three functions:

• VideoStreamEncoder::OnFrame: this is the first function of the WebRTC program scope to interact

with a video frame, received from the video input, and so plays a major role in identifying if any

errors on the frames could be due to the video input and not the actual WebRTC program.

• RtpVideoSender::OnEncodedImage: this is the function called after the encoding process of the

video frame is complete, and so, from this point forward any error that could occur is not related to

the video encoder in any way.

• PacingController::EnqueuePacket : lastly, this is the last function that will deal with the RTP packets

generated from the encoded video frame, and so, any errors that occur after this point are due to

external entities not related to the WebRTC program.

In summary, the goal of instrumenting WebRTC in this form is to allow developers and researchers to

easily understand the basis of the WebRTC infrastructure and design without the need to read through

pages and pages of technical documentation. Specifically, we intend to shed light into the most important

and critical areas of code for the development of a multimedia covert streaming tools based on WebRTC.

For this, it is important to be able to insert covert data without disrupting previous video encoding or other

processes that can lead to errors and discarding of frame, worsening the tool’s throughput.

Summary

This chapter has detailed the fundamentals of the WebRTC protocols and it’s accompanying infras-

tructure. We explained the different stages of establishing a connection for the WebRTC protocol and

introduced gateways as a solution to privacy issues and larger WebRTC video calls, allowing for better

performance and scalability in larger video calls. Lastly, we explained our process for instrumenting the

protocol. This chapter servers as the basis for the next chapter, as understanding WebRTC fully is key

to developing our solution - TorCloak, which we will present in the next chapter.
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Chapter 4

TorCloak

In this chapter, we present the design and implementation of TorCloak, our proposed new Tor Pluggable

Transport that leverages WebRTC services to deploy covert channels to bypass censorship. We begin

by describing the design goals (Section 4.1) followed by the threat model (Section 4.2). In Section 4.3,

we present the architecture of our system and its components. In the following sections, we provide

a more detailed description of the most key aspects and challenges of TorCloak, namely: managing

the Bridge Infrastructure (Section 4.4), tunneling Tor Traffic through WebRTC (Section 4.5), and the

extension to mobile platforms (Section 4.6).

4.1 Design Goals

The overall goal of TorCloak is to securely bypass Tor traffic censorship imposed by an adversary us-

ing advanced traffic analysis techniques. Such an adversary is assumed to actively attempt to detect

streams that make use of TorCloak to bypass its censorship mechanisms and actively disrupt and tear

down those streams. The design of TorCloak is driven by the following sub-goals:

1. Unobservability: A censor must not be able to distinguish regular WebRTC videocall streams

from streams carrying covert data.

2. Unblockability: There must be significant collateral damage to a countries’ social and economic

status if a censor attempts to block the carrier WebRTC application upon which TorCloak sits.

3. Video-carrier independence: TorCloak’s encoding strategy should be able to allow it to work

under any WebRTC-based carrier application.

4. Reasonable performance: TorCloak must achieve sufficient performance for allowing most typi-

cal Internet tasks (e.g. exchange e-mails, upload files, watch standard to high-resolution videos).

5. Uphold Tor’s anonymity properties: Since we are building our system to use Tor traffic, it is

crucial that it maintains the many security and privacy features of the Tor Network and does not

pose a threat to the Tor infrastructure.
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Figure 4.1: TorCloak Architecture.

4.2 Threat Model

In the context of TorCloak, the goal of the adversary is to detect and block the usage of the system,

without jeopardizing legitimate WebRTC connection that can be vital to the country’s economy. We

assume that the adversary is a state-level censor, able to observe, store, interfere with, and analyze all

the network traffic of the Internet infrastructure originated from TorCloak endpoints, if within the censor’s

jurisdiction. The adversary is also able to block generalized access to remote Internet services it deems

sensitive, such as the Tor Network. The censor is considered to have advanced tools based on Deep

Packet Inspection (DPI) and statistical traffic analysis to detect and block these services.

However, several attacks are out of scope. We assume that the censor does not have control and

access over the used WebRTC gateways. In other words, the censor cannot observe the video streams

and evaluate whether the video streams contain covert data or not. Secondly, we deem the adversary to

be computationally bounded and unable to decrypt any encrypted traffic for services it does not control,

such as Tor Traffic. The adversary’s control is also limited to the network: it has no control over the

software installed on end-user computers and does not have the power to deploy rogue software on

these machines, with the purpose of monitoring systems on network edges. Thus, TorCloak’s users and

bridges are assumed to be executing trusted software. Also, as mentioned earlier, the adversary will

only seek to rapidly disrupt and tear down traffic which is suspected of carrying covert channels, and it

will refrain from blocking the carrier application all together, avoiding the blockage of an important and

highly used service by the population and damaging its economy. Lastly, we also assume the censor

has no control over the Tor network and its infrastructure, and so, cannot easily control or observe any

of the traffic after it enters or exits the Tor Network.
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4.3 Architecture

Figure 4.1 depicts the general architecture of TorCloak. TorCloak makes use of the WebRTC framework,

which handles the signaling and establishment of video calls between the client and bridge. The system

itself consists of three components (highlighted in green shade): client, bridge and broker. The client

runs a Tor proxy that exposes a SOCKS interface to local applications, e.g., the Tor Browser or Tor’s

command line interface. The client then tunnels away local Tor traffic by embedding it into video frames

using the Protozoa encoders and sending them through the video stream of a carrier WebRTC-based

application (e.g. Jitsi Meet). At the other end of this tunnel, a bridge routes the then already decoded

Tor traffic to a Tor relay so it can then be forward to its final destination. The broker coordinates all of

the bridges composing TorCloak’s bridge infrastructure and runs a directory service that allows users to

locate available bridges.

In addition to users, there are two additional main actors in TorCloak’s ecosystem: bridge providers

and a broker provider. Bridge providers contribute to the TorCloak infrastructure by deploying the server

hardware and running TorCloak’s bridge software. These can be volunteers that wish to freely contribute

to the TorCloak Project or private or public non-profit institutions willing to share spare resources for pro-

moting freedom of speech on the Internet. The broker provider is a trusted authority whose purpose is

to coordinate bridge membership. It is responsible for managing the new registers from bridge providers

and making sure that community guidelines are met. These can include making sure the proper deploy-

ment of TorCloak is followed, the proper propagation of the bridge is achieved and, of course, the safety

and anonymity procedures are followed. To deploy a TorCloak bridge, a bridge provider must: i) set up

the server hardware, ii) install TorCloak’s software, and iii) register the bridge in the broker service. The

bridge can then listen for rendezvous ID (RID) sent by the broker, which corresponds to the address a

particular TorCloak user client will join to establish a videocall session with the bridge. The rendezvous

ID depends on the chosen WebRTC-based carrier application. For instance, in Jitsi Meet, it can take

the form of a chatroom URL such as https://meet.jit.si/torcloak_client1. TorCloak users can

then send the broker a randomly generated chatroom URL and join a video call on Jitsi Meet at the that

chatroom URL. The broker will then request a bridge to join the same chatroom URL and being the the

establishment of a TorCloak covert session.

To illustrate this process, Figure 4.1 shows Alice, a user located in a censored region controlled by a

state-level adversary, using a TorCloak bridge located in a free Internet region. To access www.cnn.com

through the Tor network in a censorship-resistant fashion, Alice must get access to the TorCloak PT

client software (e.g., through some out-of-band channel) for her local platform, which can be desktop or

mobile. She must then configure her Tor client to use TorCloak as the designated Pluggable Transport.

Alice can then initialize her browser, which will cause the TorCloak client to generate a random RID

and password on a chosen WebRTC platform (in our case Jitsi Meet) and send it to the broker. The

broker will then pick an available bridge and send it the RID and password. The bridge and client can

now join the chosen chatroom. It is important that the chatroom is password-protected so that only the

user and the bridge can access the same room. The covert channel is then established between client
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and bridge and the pluggable transport is ready to covertly tunnel Tor traffic through this channel. By

employing Protozoa video encoding techniques, TorCloak will ensure that the WebRTC stream being

transmitted over the network between the client and the bridge will preserve the same properties as a

regular video call, therefore, offering strong resistance to traffic analysis attacks.

4.4 Management of Bridge Addresses and Membership

We begin our discussion of the main technical challenges that we had to tackle by focusing on the

management of bridges’ rendezvous addresses and membership. This management is essential to

create a sustainable, easily scalable and censorship-resistant infrastructure.

1. Looking up rendezvous addresses: As described above, to establish a covert channel, the user

must know in advance the chatroom’s RID and password made available by the bridge for its con-

nection. However, by constantly eavesdropping on the users’ network requests, the adversary may

try to intercept this information, join the same chatroom, and start snooping into the transmitted

(altered) video frames. By intercepting covert Tor frames embedded in the WebRTC frames, an

adversary could determine the presence of suspicious content and block the transmission. There

is also the chance that, by performing data analysis during a sufficiently large period, a state-level

adversary would be able to detect the transmission of such RIDs and correlate Bridges’ IP ad-

dresses. The adversary could then blacklist such addresses and stop the user from being able to

establish connections towards TorCloak bridges. So, there needs to exist a secure way for bridges

to share their RIDs.

2. Rotating rendezvous addresses: Another problem related to chatroom RIDs is how to manage

them and rotate them. Should RID addresses be rotated per user? Per session? Per bridge?

This is important because reusing or maintaining the same RID for a long period or for multiple

users increases the chance of the RID getting leaked or the allow the adversary to, via random

guessing, discover a RID and monitor that specific chatroom indefinitely. Despite the video call

rooms being password protected, so even if an adversary gets hold of a RID we cannot join the

room, we can attempt to bruteforce the password. With enough computer power (available to most

powerful censors) we can possibly bruteforce the password and join the room, giving him access

to the covert session and breaking anonymity.

3. Handling bridge churn: TorCloak must also be able to deal with the addition or removal of bridges,

and efficiently manage their distribution and workload. Bridge providers might decide to leave at

any time, even during a covert data transmission session. The bridge attribution can also be done

with the user’s region in mind, to reduce latency. The broker must also assure that its bridges are

available and functioning properly.

4. Bridge authentication: Since the bridge providers can be untrusted entities unless they are properly

authenticated, there needs to be a mechanism in place that allows users to validate the identity
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of the bridge provider before they decide to rely on their services for establishing covert chan-

nels. Otherwise, an adversary may attempt to deploy a malicious TorCloak bridge in the hopes of

eavesdropping and exposing the user’s transmissions and data.

We will now present our proposed solution to solve the challenges exposed above. Firstly, one way

of securely and anonymously sharing the rendezvous chatroom IDs with the individual users is to use

an out-of-band channel transmitting the RID using an application that is not based on Tor (otherwise it

would be blocked by the adversary). Similar to the way we transmit covert data, we can pick a carrier

application that i) does not depend on an ID to establish a connection, ii) is secure and encrypted end-

to-end, and iii) is widely used thus offering strong resilience against blockage attempts. An example

would be to use an encrypted email service (e.g. ProtonMail), chat application (e.g. Signal) or even

Tor’s Telegram and Email bridge sharing service [63] where the user could send a predefined standard

format message to request to be issued a rendezvous chatroom ID. The user could then receive the ID

and establish a WebRTC-based application video call to that chatroom ID and use TorCloak’s software

to start to exchange covert data.

To provide such an out-of-band channel, our initial approach was to consider Tor’s pre-existing direc-

tory service for managing bridges, namely BridgeDB1. For TorCloak’s purpose, BridgeDB would function

similarly to the way it is currently implemented, but instead of helping users lookup the IP addresses of

bridges available to be contacted, BridgeDB would provide them with RIDs from a host application (i.e.

Jitsi Meet). This would allow the client’s TorCloak to establish a WebRTC-based video call which would

then serve as the covert channel for Tor traffic. Upon discussion with Tor’s anti-censorship team, we

realized that using BridgeDB would involve a large amount of changes to BridgeDB, which would make

this approach cumbersome. Instead, we agreed to follow a structure similar to Snowflake’s[30] proxy

dissemination mechanism. Specifically, we deploy a broker, whose job is to connect TorCloak Clients to

TorCloak bridges. This consists of a simple API which clients will use to share a RID they are intending

to join, alongside with the RID’s corresponding password. The broker will find an available bridge and

forward that Chatroom ID so they can both join and initiate a video call. To avoid the possible block-

age of the broker by a censor, in the near future, we intend to deploy a mechanism similar to Domain

Fronting[14]. By offloading most of the heavy computing to the client side we achieve two important

goals: i) decrease the network and computing load on the bridges, making it so that more individuals

can be motivated to deploy TorCloak’s bridges since it will have a very low impact on their infrastructure

and accompanying costs, and ii) by compacting the information shared between client and broker, we

highly reduce the cost of deploying a solution with Domain Fronting, which, when used to transfer high

amounts of data, can amount to a large monetary cost [14].

The rotation of the chatroom RIDs must also be managed and controlled to ensure maximum resis-

tance again censorship. The main problem here is to a) make the bridges available for many different

clients simultaneously, while b) making it hard to block the connection towards TorCloak bridges. Leav-

ing RIDs open for long periods of time or available to many different users will naturally make RIDs more

prone to be spotted by the censors. On spin up, the TorCloak Client generates a RID for that session.
1https://bridges.torproject.org/
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The client can then publish this RID on the broker, which will then transmit it to an available bridge. The

bridge’s only work is to join the chatroom corresponding to that RID and establish the covert session.

The RID is only valid in a per session per user basis. This mean that after that specific videocall session

is terminated, a new RID must be generated and shared to initiate a new session. Bridges themselves

also advertise their public key certificates to the broker. The TorCloak client can then download such

certificate from the broker and verify the bridge’s identity using it. Upon startup, the client will request the

bridge to send an authenticated message, which can then be used to authenticate the chosen bridge

(hence solving the fourth challenge listed above).

Ideally, TorCloak should accrue a reasonably-sized pool of bridges. In addition, the more geograph-

ically disperse they are, the better will be the availability and performance of TorCloak. To this end,

we plan on collaborating with Tor core developers and non-profit foundations that embrace freedom of

information, such as the Freedom of the Press Foundation2.

4.5 Tunneling Covert Tor Traffic through the Bridge

Tunneling Tor traffic through WebRTC covert channels while preserving the compatibility with the Tor

pluggable transport API requires a non-trivial integration of complex and heterogeneous pieces of soft-

ware. Figure 4.2 sheds light on how we design the internals of TorCloak’s client and bridge, representing

also how their subcomponents interact with each other during Alice’s visit to cnn.com using our system.

These subcomponents perform various functions, most notably: i) SOCKS [64] proxy interfacing with

external applications (i.e. local Tor client), ii) client and bridge controller to orchestrate all of the com-

ponents, iii) Tor pluggable transport specification implementation, and iv) WebRTC-covert channel man-

agement and data transmission. The Tor proxy is configured to use the TorCloak pluggable transport.

Upon starting, it instantiates a TorCloak gateway, which is based on the Protozoa architecture (see Fig-

ure 2.5). The gateway exposes an internal SOCKS proxy to receive the locally generated Tor traffic. Tor

cells can then be encoded as TorCloak messages into WebRTC frames and sent through a WebRTC-

based carrier application video call tunnel. The upstream and downstream hooks intercept, respectively,

outgoing and incoming WebRTC frames to be processed by TorCloak, and to be encoded or decoded

accordingly. The client/bridge controller is responsible for the coordination of all these components, pro-

cessing local Tor events and exceptions, and performing TorCloak-specific protocols to synchronize the

client and the bridge.

In particular, the main integration challenges we faced are as follows:

1. Retrofit Protozoa with the existing Tor pluggable transport software: To allow TorCloak to be readily

used by Tor users, the pluggable transport has to be able to interact with the whole already existing

Tor infrastructure and software while leveraging the covert WebRTC channels. This required us

to adapt the protocols previously implemented by Protozoa to suit the specific specifications and

restrictions of Tor’s pluggable transport API.

2https://freedom.press/
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Figure 4.2: TorCloak’s Main Components.

2. Traffic analysis resistance: We needed to consider that transmitting Tor traffic through the covert

channel might create traffic patterns susceptible to traffic analysis attacks, since the frame size and

delivering timings might change. We needed to assure we can produce indistinguishable patterns

in the transmitted packets to preserve unobservability.

3. Performance degradation: It is also possible that Tor’s network performance will decrease when

tunneled through Protozoa channels. Despite Protozoa’s improvements in the covert channel

throughput, there exists a bottleneck when streaming traffic through WebRTC-based covert chan-

nels, which is bounded by the throughput achieved by the carrier video call data streams. It stands

to reason that the Tor circuits tunneled through these channels will also be throttled. Assess-

ing how Protozoa’s transmission mechanism can be adapted to Tor’s specific data transmission

scheme was key to developing an efficient implementation of TorCloak.

Faced with the aforementioned challenges, we now present our solution focusing on two main as-

pects: VP9 codec adaptation and covert frame encoding and decoding.

Covert frame encoding and decoding: Similarly to Protozoa, TorCloak’s encoding mechanism re-

places the bits of the encoded video signal, after it has been processed by the video encoding engine.

This is done by modifying the WebRTC stack bundled into the Chromium Browser. The WebRTC stack

contains several built-in codecs (VP8, VP9, etc) which process the video signal of local applications that

use the WebRTC Javascript API [7]. To access the video frames generated by the WebRTC application

and implement encoded media tunneling, the WebRTC Protozoa stack includes two included hooks that
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can intercept the processing of the media streaming different directions, i.e., upstream or downstream.

The upstream hook intercepts outgoing frame data, i.e., from a local camera device to the network. It is

placed after the raw video signal has been processed by the video engine, and right before the frame

data is passed over to the transport layer where SRTP packets are created, and sent to the network. The

downstream hook intercepts incoming frame data, i.e., from the network to the local screen. It is placed

right after the transport layer has finished reconstructing an encoded frame sent in multiple network

packets, and right before handing it over to the video engine to be decoded and rendered on screen. We

make use of a data structure called encoded frame bitstream (EFB) (represented in figure 4.3). This

is the frame format that Protozoa also uses and it naturally separates the frame’s zones where we can

encoded data and those where encoding data will most likely harm the functioning of the video stream,

leading to losses. We chose this data structure because, besides its header, it contains partitions that

only store the encoded video bytes, and nothing else. Furthermore, this data, after being generated by

the video encoding engine, is no longer modified, and is only encrypted and protected with authenti-

cation markers before being assembled into packets. It makes it a suitable place to encode our covert

data, ensuring the covert data is not modified by the application and still is encrypted and authenticated.

The only thing we need to keep in mind is, while it is possible to fully replace the content of the EFB

field, the undisciplined corruption of a frame bitstream can prevent the video decoder in the WebRTC

downstream pipeline from correctly decoding video frame data at the receiver’s endpoint. We verified

that in such situations, WebRTC triggers congestion control mechanisms in the downstream pipeline for

ensuring the reception of video. In particular, it advertises a Picture Loss Indication (PLI) in the accom-

panying RTCP control channel [65], aimed at requesting the re-transmission of a key frame upon being

unable to decode the corrupted frame data. By advertising PLIs and requesting retranmissions, the

resulting channel bandwidth would be severely reduced and the resulting traffic patterns produced by

the WebRTC application would make TorCloak vulnerable to traffic analysis. To overcome this problem,

the downstream hook feeds the WebRTC video decoder with a pre-recorded sequence of valid encoded

frames instead of the corrupted frames received over the network. This allows us to establish a covert

channel without triggering any frame corruption control mechanisms.

In conclusion, since we are assembling our encoding and decoding strategy fully detached from any

codec or special data structure, we can theoretically encode any type of data into the video frames. We

are, in a simple way, replacing bytes that, in a normal setting, would represent video frame data, but in

our solution will represent Tor traffic data.

VP9 codec adaptation: When adapting our prototype to newer versions and services, we discovered

that several WebRTC-based videocall applications, such as Jitsi Meet, had moved away from older video

codecs like VP8 and adopted newer and improved ones such as VP9. This meant that, as mentioned

above, we needed to to adapt Protozoa’s EFBs to the new data format of VP9. In Figure 4.3 we can

see the main difference between the structures of both codecs: the addition of one extra compressed

header, joining the already pre-existing uncompressed header.

So, in order to maintain the codec’s headers, and avoid corrupting the frame and triggering control
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Figure 4.3: Format of VP8 and VP9 Encoded Bitstream.

mechanisms, we need to adjust our offsets to account for the new header. Using the VP9 Decoding

Specification [66] together with WebRTC’s VP9 decoding structure3, we were able to determine the cor-

rect offset calculation to be able to replace the bytes corresponding to pixel data without disrupting the

headers, maintaining the frame’s integrity. The general structure of a VP9 TorCloak bitstream is repre-

sented on Figure 4.4. Here we can see that TorCloak replaces the EFBP payload containing carrier video

bits with covert data, while maintaing the header structure intact for the decoding process.Furthermore,

we modified WebRTC’s encoded frame.h structure to include information be able to retrieve information

about the codec used to encode the frame. This allows us to determine the codec being used in run-

time and adapt our encoding strategy on the fly, enabling TorCloak to support multiple video encoding

codecs. Lastly, and as mentioned above, we empirically verified that the VP9 encoded frames highly

differed from the VP8 ones. This meant that, if we feeded the video decoder our previously recorded

valid encoded frames corresponding to the VP8 codec, WebRTC frame corruption control mechanisms

would be triggered and the frame discarded, hindering our performance and traffic analysis resistance.

To overcome this issue, we re-recorded the sequence of valid encoded frames, for the VP9 codec. Addi-

tionally, by using our information about the codec being used to encode the frames for a specific session,

we are able to, in runtime, switch the pre-recorded frames we are feeding the video decoder, to adapt to

different video codecs.

4.6 Extension to Mobile Platforms

Although we have only implemented a desktop version of TorCloak by the time of the writing of this doc-

ument, we intend to develop a mobile version in the near future. For the desktop setting, we leveraged

Protozoa’s mechanisms for tunneling arbitrary IP-traffic, which make use of Linux namespaces to create

virtual network environments. However, in a mobile operating system such as Android, we cannot adopt

this approach since user-level applications do not have the privileges to access kernel-level operations.

As we want TorCloak to be installed and used by common Internet users, we require a user-friendly

alternative, compatible with the existing Android API [67].

For this setting, we intend to follow a similar approach to already mobile-friendly PTs, following a

similar approach to the one used to create ORBot4. ORBot can open a HTTP or SOCKS proxy to

3https://webrtc.googlesource.com/src/+/ffd9187dc0d9211ad52173bf0daa5001ca7d45ee/modules/video_coding/

codecs/vp9/libvpx_vp9_decoder.cc
4https://guardianproject.info/apps/org.torproject.android/
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the local mobile application and route their traffic to the Tor Network. Recent versions also include

the support for Pluggable Transports like Snowflake. We intend to use an available Android Pluggable

Transports library also developed by the GuardianProject5. This library includes code used to develop

ORBot and allows developers to add features like VPN-mode to their pluggable transport. The VPN

mode allows mobiles users to route all of their device’s traffic through the application, similarly to how

a VPN works. It also includes pre-compiled libraries that can be used to perform regular Pluggable

Transports functions in an android setting.

The main challenge we face for the Android platform is tied to the implementation of the WebRTC

hooks and video feed, required for TorCloak’s functioning. Currently, in our desktop setting, for TorCloak

to work there needs to be a i) modified Chromium browser with our hooks and ii) a video feed, either

captured directly from a webcam or replayed from a previous video recording. However, Android is

composed of multiple security features that highly restrict what system resources and other applications’

data have access to in order to prevent malicious applications from fully controlling the device. This

highly restricts the usage of a modified Chromium Browser, complicates the automation of the process

through which TorCloak users would join a chatroom, and creates obstacles in the usage of a camera

emulator that can feed pre-recorded video to the WebRTC software stack. For example, by default,

Android does not allow the installation of any application from a source other than the official Google

Play Store. So installing a modified Chromium Browser without the permission for it would already

hinder our process. Lastly, we also need to adapt most of our C++ codebase to the Android platform

and making sure the libraries we use are compatible and can generate binaries suitable for a mobile

setting. For this we can also make use of Android’s Native Development Kit (NDK) [68], which consists

of a set of tools that allows for the use of C and C++ code with Android, and provides platform libraries

that can be used to manage native activities and access physical device components, such as sensors

and touch input. While the above list of implementation challenges is rather substantial, it is likely we

5https://github.com/guardianproject/AndroidPluggableTransports
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will be able to take advantage of the codebases of existing PTs that are specifically geared to the mobile

environment (e.g., Snowflake Mobile Proxy [69]) to develop a mobile version of TorCloak.

Summary

This chapter has detailed the design of TorCloak, an Internet censorship circumvention system that

leverages the video channel of existing WebRTC applications to tunnel covert Tor data. The design of

TorCloak and its accompanying infrastructure allows Tor users to easily find and connect to a bridge

and establish a covert channel that will allow them to use the Tor network undetectable. One of the

primary concerns of the system’s design is to remain undetectable, allowing the safe circumvention

if censorship, while still being reasonably accessible for those who wish to use. Another concern is

to make the system as abstract from the carrier application as possible, allowing it to be deployed in

multiple ways and with multiple WebRTC service providers easily. We also highly detailed the security

concerns and safety measures took to make sure our code is as safe as possible. The next chapter will

present a comprehensive description of biggest challenges in the implementation process.
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Chapter 5

Implementation

This chapter addresses the implementation details of our TorCloak prototype. Section 5.1 gives an

overview of the implementation. Then, we provide several details about the implementation of TorCloak’s

main components, in particular the Pluggable Transport (Section 5.2), the SOCKS Proxy (Section 5.3)

and the upstream/downstream pipes (Section 5.4). Next, we clarify the adaptions made to the WebRTC

framework (Section 5.5) and the debugging process involved (Section 5.6). Lastly, Section 5.7 describes

the full auditing process our prototype was subjected to and the vulnerabilities found.

5.1 Implementation Overview

We developed a TorCloak in about 4000 lines of C++ code. This includes the whole Pluggable Transport

related code, that handles Tor events, as well as the instrumentation of the native WebRTC codebase of

the Chromium browser v100.0.4896.127, a stable release from April 2022. TorCloak requires the proper

establishment of a WebRTC video call session for embedding data into encoded frames sent over the

network. For this purpose, WebRTC must be able to access a video feed that can be directly obtained

from the physical camera available in the system. Alternatively, it is possible to setup a camera emulator

by using the v4l2loopback kernel module [70] and feed recorded video with the help of the ffmpeg video

library [71]. We will now describe in more detail about the most critical aspects of the implementation of

TorCloak.

5.2 Pluggable Transport

In order to avoid changing Tor protocols we designed TorCloak as a Tor pluggable transport (introduced

in Section 2.2). Indeed, Tor developers have published a PT specification [72],written in an RFC-like

document, which details how PTs can be integrated into Tor and how the Tor binary should interact with

PTs (e.g., starting and shutting down the activity of a PT).

The activation of TorCloak following the PT API is depicted in generally in Figure 5.1 : each Tor

instance loads a configuration file – denoted torrc – containing TorCloak executable path, command line
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arguments and Tor mode operation (e.g. bridge or client). When launched with this configuration file,

Tor starts TorCloak as a subprocess. Several command line variables are set by Tor to the TorCloak

executable, exposing Tor configurations, e.g. the bridge remote address. TorCloak reports back to Tor

by writing success or error messages into the stdout in a standardized format, which Tor, the parent

process, is able to capture and read, e.g. local port where TorCloak accepts connections from local Tor

(sketched as the red/green arrows in Figure 5.1). During shutdown, Tor also takes care of a performing

a controlled shutdown of TorCloak, making sure the process’s memory is freed properly. This process

is accomplished by closing the stdin of TorCloak. TorCloak, upon detecting a closed stdin, begins to

cleanly shutdown all of its components. Apart from the initial configuration, is up to TorCloak to establish

a remote WebRTC video call session connection with the TorCloak bridge to send and receive covert Tor

data. In this fashion, TorCloak can be fully managed by the local Tor client, configuring all of its options

and preferences automatically, with no need of any user interaction.

Tor BridgeTor Client

TorCloak Gateway

Socks Proxy
Client

TorCloak Bridge

Local 
Connection

Tor Protocol

Local 
Connection

Onion Port

TLS 
Connection
Socks Proxy

Bridge
WebRTC
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Figure 5.1: Pluggable Transport configuration and TorCloak Socks Proxy.

5.3 SOCKS Proxy

As pointed out in Figure 5.1 and detailed in Section 2.2, Tor plugabble transports make use of SOCKS

proxies to communicate with the Tor Client and exchange data between them. Specifically, the TorCloak

Client gateway exposes a SOCKS [64] as an endpoint for receiving Tor traffic and the TorCloak bridge

exposes a reverse SOCKS proxy that accepts local Tor connections. Thus, Tor itself exposes a SOCKS

proxy that allows external application to route their traffic on top of the Tor Network. When a pluggable

transport is in use, Tor then routes it’s traffic to the pluggable transport’s SOCKS proxy also.

Internally, the proxy (see Figure 5.1) was modified to initialize the connection, following every step

defined in the standard, and create a local file descriptor corresponding to the local Tor connection. This

can then be passed to the WebRTC portion of the program to encode the data received on the proxy into

the encoded frames of the WebRTC video call. The SOCKS proxy servers as a middle-man between

the local Tor application and the WebRTC encoding/decoding hooks.
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5.4 Upstream/Downstream pipes

One of the key aspects of TorCloak is the communication between the actual TorCloak process and the

modified Chromium browser process. These need to exchange data in order to encode locally generated

Tor traffic into the already encoded video frames of WebRTC. For this purpose, we employ two pipes for

receiving upstream and downstream messages from the WebRTC layers. These pipes consist of FIFO

(first in first out) queues, that i) send the frame data received over the WebRTC session running in the

Chromium browser process, to then be decoded by the TorCloak process and ii) and receive the frame

data with the encoded data from the TorCloak process and send it over the WebRTC session running in

the Chromium browser process.

This implementation allows the two separate process to run separately while still being able to share

data between them in a sequential fashion. This allows TorCloak’s upstream hook to intercept outgo-

ing frame data, i.e., from a local camera device to the network and the downstream hook to intercept

incoming frame data, i.e., from the network to the local screen.

5.5 Adapting WebRTC codebase versions

The next step in the development of TorCloak was the adaptation of the original Protozoa code to newer

versions of WebRTC. Originally, Protozoa was developed to operate with the WebRTC version present in

Chromium browser version v79.0.3945.117, a version from January 2020. We chose Chromium version

100.0.4896.127, a stable version from April 2022, around the time we began the development. We then

proceeded to adapt the preexisting decoding and encoding hooks to this newer version.

Despite the version being more than two years apart, the actual places of code that we require to

perform our covert data encoding and decoding suffered minor changes. This may be due to the fact

that these are core functions of the WebRTC multimedia pipeline and so cannot be highly modified

without requiring a lot of changes to current software that depends on older versions. This suggests that

TorCloak will remain compatible (albeit with potential minor tweaks) with upcoming WebRTC releases.

We can see in Figure 5.2 two different versions of the same VideoReceiveStream::OnCompleteFrame

function: on the left the version corresponding to the WebRTC version in Chromium version 79 and on

the right the one present in WebRTC of Chromium version 100. This function is called once WebRTC is

finished assembling a complete frame from the received network packets. It is the first function to pro-

cess a fully assembled frame, and so it is the optimal place to place our decoding hooks (explained in

greater detailed in Section 3.3). Furthermore, the data structure received on this function, EncodedFrame,

does not suffered any major changes between the versions. This is also key in our decoding process,

allowing us to extract the same information from this data structure whatever the WebRTC version is.

The same happens in the encoding hooks of TorCloak, injected in function RtpVideoSender::OnEncodedImage

of the rtp video sender.cc1 file. As explained in detail in Section 3.3, this is the first function to receive

a fully encoded video image from the video encoder engine. This makes it the ideal place to intercept

1https://webrtc.googlesource.com/src/+/ffd9187dc0d9211ad52173bf0daa5001ca7d45ee/call/rtp_video_sender.cc
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void VideoReceiveStream::OnCompleteFrame(
 std::unique_ptr<video_coding::EncodedFrame> frame) {

 RTC_DCHECK_RUN_ON(&network_sequence_checker_);

 int64_t time_now_ms = rtc::TimeMillis();
 if (last_complete_frame_time_ms_ > 0 &&
   time_now_ms - last_complete_frame_time_ms_ >
kInactiveStreamThresholdMs)  
 {
  frame_buffer_->Clear();
 }
 last_complete_frame_time_ms_ = time_now_ms; 
 ... 
} 

void VideoReceiveStream2::OnCompleteFrame( 
 std::unique_ptr<EncodedFrame> frame) {

  
 RTC_DCHECK_RUN_ON(&worker_sequence_checker_); 

 int64_t time_now_ms = clock_->TimeInMilliseconds();

 if (last_complete_frame_time_ms_ > 0 &&

  time_now_ms - last_complete_frame_time_ms_ >
kInactiveStreamThresholdMs)  { 

  frame_buffer_->Clear();

 }
 last_complete_frame_time_ms_ = time_now_ms; 
 ... 
} 

Figure 5.2: Comparison of the same decoding function in different WebRTC versions.

this image to replace its pixel data with our covert data. Once again, both version of WebRTC contain

very similar implementation of this function, allowing us to mostly reuse the code for the encoding hook.

In summary, by placing the encoding and decoding hooks in the main function of the WebRTC flow

we can not only have access to all of the information we need to replace the frame’s data, but also can

further future proof TorCloak since it is unlikely that this function will be the target of large changes in

future versions of WebRTC.

5.6 Debugging WebRTC gateways

After updating TorCloak hooks to newer WebRTC versions, we faced some problems when deploying our

solution in Whereby2, the same media platform used during Protozoa’s original evaluation. Specifically,

prominent WebRTC video call service providers have started to deploy WebRTC gateways to improve

their system’s performance and scalability, while also addressing some security concerns (see Section

3.2). Unfortunately, Whereby is not open-source and exposes very little documentation on its infrastruc-

ture, hiding details on how the gateway is implemented and what function it serves. For this reason, we

sought to find more concrete details about the behavior of WhereBy’s WebRTC gateway.

Debugging WebRTC sessions and gateways revealed to be an arduous and time consuming task.

However, with the help of the instrumentation framework we described in Section 3.4, we were able to

deconstruct each portion of the WebRTC encoding and decoding flow. Upon that, we noticed that, when

using the Whereby platform, after a few minutes of use, only approximately less than half of the frames

and packets sent by one of our endpoints were actually being received in the other end. By analysing

the endpoints in our WebRTC call, we were able to understand it was not actually a peer-to-peer call but

instead there was a third-party entity to which our endpoints were sending their data, corresponding to

Whereby’s WebRTC gateway.

With this information in mind, we concluded that the WebRTC gateway implementation used by

Whereby employs some traffic control to ensure the video calls attain a high quality and performance.

While this generally increases call quality for usual clients, it complicates the process of building a fast

2https://whereby.com/
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Identifier Description Risk

RPT-01-001 World-read/writable encoder/decoder pipe files Low
RPT-01-002 Potential DoS via absent last fragments Medium
RPT-01-003 Out-of-bounds read in gatherPayload Medium
RPT-01-004 Out-of-bounds read in retrieveDataFromFrame Medium
RPT-01-005 Outdated and vulnerable WebRTC in Google Chrome Medium
RPT-01-006 Lack of return value checks in several functions Info
RPT-01-007 Discouraged usage of NF STOLEN verdicts Info
RPT-01-008 Unbounded Size of Stack Buffer may result in DoS Medium
RPT-01-009 Out-of-bounds read in gatherPayload by non-termination Medium
RPT-01-010 Injection of Fragments into Packets Info
RPT-01-011 Memory Leak in PacketHandlerThread leads to potential DoS Info

Table 5.1: Security vulnerabilities found during audits.

and reliable covert channel over WebRTC. Overcoming this issue would require a dedicated mechanism

to track frame loss and request re-encoding of information lost in the discarded frames. To circumvent

this necessity when building our TorCloak prototype, we opted to focus on the usage of Jitsi Meet3, an

alternative WebRTC video chat application which, to the extent of our knowledge and experimentation,

does not apply any sort of traffic control mechanism at its WebRTC gateways. Jitsi Meet allowed us to

ensure that the majority of frames sent by an endpoint would be received at the other call’s endpoint.

5.7 Security Audits

This section describes the process behind the two security audits we subjected our code to, to ensure

it our code is solid and has no security vulnerabilities. The audits were completed by the Cure534 team

in weeks 25 and 36 of 2022. The code was shared on a common repository, also containing extensive

documentation explaining the scope and threat model of the project. It also included the description of

each file and what functions it contained. We kept in touch the whole week with the team via Element5,

a matrix-based chat, to assist with any questions in the code or program flow.

Table 5.1 contains a listing of all of the 11 security vulnerabilities found during both audits. In total,

the team discovered the following vulnerabilities in four different categories: 0 high risk, 6 medium risk,

1 low risk and 4 information. This were all thoroughly identified and described in two complete reports of

the audits made available by the Cure53 team, which also included the mitigation suggestions for each

vulnerability. The team also conclude in their report that our code ”already exhibits a first-rate security

foundation, with only a few minor improvements required to achieve an exemplary security posture” [73].

Next we generally describe each vulnerability and the steps taken to mitigate it:

RPT-01-001: Refers to the encoding and decoding pipe file having open file system permissions.

Fixed by allowing them to be read, modified and executed only by their owner.

3https://meet.jit.si/
4https://cure53.de/
5https://element.io/
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RPT-01-002: This vulnerability described a possible memory issue. In the impossibility of sending

an entire Tor packet in one go, TorCloak fragments the data and sends it though the channel, where it

will be reassembled in the receiving end. In the receiving side, the fragments are tracked and stored

in memory until all of them arrive and the packet can be reassembled. However, if all of the fragments

never fully arrive and the packet cannot be fully assembled, the fragments will sit in memory indefinitely.

This can possibly render the application out of memory and induce a Denial of Service. To this end,

we introduced a memory management system that tracks the fragments sitting in memory and, if stored

for longer than one minute, deletes them. Even with large packets and larges amount of fragments, it

should only take TorCloak a few seconds to fully send and assemble all fragments, so a minute is quite

sufficient. The basic implementation is the following:

void ServerThread::checkUnusedPackets(){

[...]

auto iter = _dataStore->begin();

while (iter != _dataStore->end()) {

std::chrono::duration<double > duration =

std::chrono::high_resolution_clock::now() - iter->second.getLastRecvTimestamp();

if(duration > sixty_seconds)

_dataStore->erase(iter->first);

++iter;

}

}

RPT-01-003: Exposes an out-of-bound reads in our pipeline. When reading fragments from the de-

coding pipe, we first read the length of the data in the pipe. Subsequently, we read the first two bytes

of the fragment, that encode the fragment length. The issue here is there was no verification that the

fragment length was not bigger than the length of the data in the pipe. By reading this size, we could be

reading out-of-bounds since the fragment length could be bigger than the actual size of the pipe data.

This was fixed by adding the appropriate verification.

RPT-01-004: Similar to RPT-01-003, in our Chromium Hooks, for debugging purposes, we were log-

ging the frame buffer size of the received frames. However, by doing this, we were calculating our packet

size by accessing indices of the frame buffer, but failing to validate if those indices are smaller than the

total frame buffer length. This could be mitigated by adding the proper verification, but since it was only

for debugging purposes, in future iterations the code was removed as it no longer served any purpose.

RPT-01-005: This issue refers to the fact that, since the beginning our development of TorCloak,

newer and more secure versions of Chromium have been released, including some that mitigate some

existing vulnerabilities. By using a fixed version of Chromium we introduce the possibility of having some

vulnerabilities in the Chromium source code, that were not known when the version was released. To this
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end, we intend to developed a mechanism to keep our Chromium and WebRTC versions as updated as

possible. At the time being, however, for development and testing purposes, we are freezing the version

we use.

RPT-01-006: In a more general note, the Cure53 team identified some general issues when not

properly handling return values in some functions. To this end, we reviewed the code entirely and

properly handled and verified each return value to make sure all possible paths of the program’s flow of

execution are being handled.

RPT-01-007: In earlier version of TorCloak, and similarly to Protozoa, we were using libnetfilter [74]

queue to receive locally generated Tor traffic. One of the arguments when configuring the queue is

called the verdict, referring to the destiny of the packet after it has been intercepted. To this end we

were using the NF STOLEN argument to discard the packet after it’s intercepted. As pointed out by

Cure53, the libnetfilter documentation indicates that NF STOLEN should not be used6 as it is specially

treated in the kernel and may lead to memory leakage in older Linux Kernel versions. As suggested in

the documentation, we replaced it with the NF DROP argument.

RPT-01-008: When reading frame payloads from the decoding pipe, we first read the first integer from

the data to determine the payload length, and then proceed to allocate an array and set its memory

to zero according to this length. However, if an attacker attempts to send a large value of payload

length, this will result in a segmentation fault, since there is no way we can fill that much memory, and

correspond to a denial-of-service attack. As suggested by the audit team, we set an upper bound when

reading this size. If the payload length is too large, it will just be ignored and the frame will not be read.

RPT-01-009: This issue is directly related to vulnerability RPT-01-003. Since a single frame can

contain several data fragments, our code contains a while loop that keeps reading the fragments until

the size read from the first indices of the frame buffer is 0. However, if the read size is never 0, the loop

will never stop and continue to read out-of-bounds data once again. This was fixed by checking if the

amount of data read is below the frame length. Once it reaches the frame length, the reading of data

stops, avoiding reading outside of the frame’s bounds.

RPT-01-010: As mentioned before, akin to Protozoa, an earlier version of TorCloak made use of

Linux’s network namespaces for transparent interception and manipulation of locally generated Tor

packets. The packets were sent through the WebRTC session and, after arriving at the bridge side

of TorCloak, were forwarded to their final destination using a SOCKS proxy. The issue here is that: if an

attacker modifies the destination IP address to a local IP address, it can effectively have access to local

hosts on the network, which is undesirable. However, since TorCloak does not rely on this mechanism

in future version, the isssue is mitigated (see Section 7.2).

6https://manpages.debian.org/testing/libnetfilter-queue-doc/nfq_create_queue.3.en.html
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RPT-01-011: On the sending side, when creating a data structure composed of the covert data to be

sent and some necessary metadata, we have the following code:

PacketData* packetData = new PacketData(pktID, packet_data_copy,

static_cast<uint16_t>(packet_length), 1, 1, 0);

This packetData variable is allocated in the heap and is filled with all of the necessary metadata as

well as the actual Tor packet data. In the end of the function, it is written to the encoder pipe, but its

memory is never freed. After a lot of minutes of runtime, this leads to a memory leak which can result in

a possible Denial of Service. To fix this, we free the memory after we write its value to the pipe, and it is

no longer needed.

Summary

This chapter has described the implementation details of the TorCloak prototype. The pluggable trans-

port components, together with the SOCKS proxy and the encoder/decoder pipes allow TorCloak to

setup a covert channel inconspicuous to the user. Furthermore, our better understanding and debug-

ging of the WebRTC protocol and VP9 video codec allows us to better prepare TorCloak for the future.

Finally, the two security audits have allowed us to improve our code’s strength and security, making sure

users will remain safe and anonymous when using our tool. The next chapter will present TorCloak’s full

experimental evaluation and results.
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Chapter 6

Evaluation

This chapter describes the experiments that were carried out in order to evaluate TorCloak. Section

6.1 starts by detailing the evaluation methodology. We then expose our evaluation goals and approach,

while also describing the metrics used to perform such evaluation (Subsection 6.1.1). Next, we present

our experimental testbed and video dataset used (Subsection 6.1.2). We follow it up by presenting and

analyzing our experimental performance results in Section 6.2. Lastly, Section 6.3 compares TorCloak

with related work.

6.1 Evaluation Methodology

This section describes our evaluation methodology for assessing the quality and performance of Tor-

Cloak. First we will describe the goals and approach of our evaluation. Then, we present the exper-

imental testbed we designed for performing our experiments and the metrics we used to assess the

quality of our solution.

6.1.1 Evaluation Goals and Approach

Our main evaluation goals are the following: evaluate the performance of TorCloak’s covert channel

when in comparison to the normal Tor Network, and ii) compare our system’s performance with other

similar systems and assess its ability to be used for typical internet tasks.

To perform these experiments, we adopt the following set of performance metrics: we leverage

throughput and latency as the metric of performance of the covert channel. This allows us to have

a good view on the system’s capability to be used to perform regular internet tasks, that mostly depend

on the channel’s bandwidth and latency

To measure the throughput and latency of our covert channels tunneled through WebRTC video calls

channel, we are leveraging iPerf [75] and HTTPing [76]. This enables us to stress the covert’s channel

capacity and latency.
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6.1.2 Experimental Testbed and Datasets

Our laboratory testbed, illustrated in Figure 6.1, is composed of four 64-bit Ubuntu 18.04.5 LTS virtual

machines (VMs) provisioned with one Intel(R) Xeon(R) CPU E5506 at 2.13GHz with 8 Cores and 8GB

of RAM. VM1 and VM3 execute an instance of our prototype, operating as a TorCloak client and bridge,

respectively. VM2 acts as the gateway and router for the client TorCloak VM. Finally, VM4 is used to

pose as a server in the open Internet which receives requests from the TorCloak bridge in VM3 acting

on behalf of the client in VM1.

WebRTC application: We tested our system using Jitsi Meet, operating with the VP9 video codec

and using a WebRTC gateway. This allowed us to better imitate a real life scenario, since most modern

browser already deploy the VP9 codec. Furthermore, we empirically verified that Jitsi Meet employs a

WebRTC gateway for its video calls.

Video dataset: To conduct our experiments, we used 500 videos from Protozoa’s dataset “Chat” cat-

egory. These videos were collected from YouTube and generally represent the usage of video calls for

“chatting”.

Tor circuit: To ensure we would keep our tests as consistent as possible, our client was configured to

use a specific Tor circuit throughout our experiments. We manually selected all relays comprising each

Tor circuit based on Tor’s TopRelays list [77], and chose different nodes within Europe. We specifically

chose nodes which had an advertised bandwidth of over 50Mbits and an uptime of at least 50 days. This

way we can assure we are using high-performance and consistent nodes, making sure our experiments

are not bottlenecked by the Tor circuit.

Network configuration: We conducted experiments in a controlled, isolated deployment to bench-

mark results and avoid outside interference (e.g., network impairments outside of our control). These

tests are executed with an artificial network delay of 50 ms to simulate a realistic network delay for con-

nections established within the same continent [78]. We piggybacked our performance measurements

over these tests.

6.2 Performance Evaluation

This section describes the methodology used to perform our performance evaluation. We will describe

the setup used to measure TorCloak’s throughput, latency and resource utilization. Next, we present

and analyze our obtained results obtained.
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Figure 6.1: Laboratory setup.

6.2.1 Throughput

We conducted an experiment to quantify the throughput of TorCloak’s covert channel. The experiment

was conducted with a total of 250 runs, while mirroring the video transmitted on each side of the connec-

tion. This is to make sure we mostly eliminate any throughput variance related to the different dataset

videos used. Different videos have different video frame sizes, which means they can encode more

or less information. A video with rapidly changing frames will need to send more and bigger frames

between peers, while a video that has little change from frame to frame, i.e. a person sitting still while

talking, will need to send much less frames. By increasing the number of videos we use, we can get a

better sense of the average throughput we can achieve.

We also used the same fixed Tor circuit in all of the runs to ensure the most consistency (explained

in detail in 6.1.2). Even though relays advertise bandwidth as part of the Tor consensus, relays may

also impose bandwidth restrictions per user/relay connection using the TORRC options: PERCONNBWRATE,

PERCONNBWBURST, RELAYBANDWIDTHRATE and RELAYBANDWIDTHBURST which use token buckets to rate the

bandwidth of client or relay data evenly to every connected client/relay discouraging greedy users. Unlike

advertised bandwidth, per connection rates are not public, hence we conducted an throughput experi-

ment (in 50 runs) without TorCloak under the same relays configuration to measure the actual per client

throughput of the testing relay.

Figure 6.2 shows the comparisons between the throughput obtained by using the vanilla Tor Circuit

vs. using TorCloak. Our numbers show that TorCloak achieves an average throughput of 203 Kbps,

while the 90th percentile sits at 212 Kbps, and the 75th percentile at 210 Kbps. We can also see that

the throughput has a slight variability, which can be explained by still some existing heterogeneity of

the video source. This variability can also be attributed to throughput variations in the Tor circuit, which

despite being composed of the highest throughput nodes, can still have a lot of variance through out the

day as its usage and number of users increase or decrease.
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(a) Regular Tor (b) TorCloak

Figure 6.2: Regular Tor and TorCloak throughput comparison.

6.2.2 Latency

To measure the latency of the channel, we conducted a Round-trip time (RTT) measurement over Tor-

Cloak’s covert channel. Since ICMP is not operational through Tor, we resorted to HTTPing [76] to

conduct RTT measurements. This tool performs a HTTP request and measures the time it takes to

receive the first byte of the header. Figure 6.3 depicts the comparison of the average latency between

the regular Tor Network (left) and the one using TorCloak (right). We can see the average latency of

the normal Tor circuit is around 500ms while the average latency using TorCloak is around 5000ms.

This is accounting for the added 50ms artificial latency to emulate connections established in the same

continent.

(a) Regular Tor (b) TorCloak

Figure 6.3: Regular Tor and TorCloak latency comparison.

6.2.3 Resource Utilization

We also analyzed the overall resource utilization on each instance of TorCloak, using Linux’s htop [79]

tool. This important to make sure our prototype does not consume a lot of resources, making it impracti-

cal to deploy or use in a day to day basis. We verified that both client and bridge VMs peaked at around

25% CPU usage and at around 600MB of memory usage. This numbers suggest that TorCloak can be

executed on various commodity hardware platforms.
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6.3 Comparison with Related Work

In this subsection, we compare the performance results of TorCloak’s evaluation with those of Proto-

zoa [6], Stegozoa [25] and DeltaShaper [22], shown in Table 6.1.

System WebRTC Service Throughput
Protozoa Whereby 1.4 Mbps
TorCloak Jitsi 203 kpbs
Stegozoa Jitsi 8.2 kbps

DeltaShaper Skype 3.6 kbps

Table 6.1: Performance comparison with related work.

Stegozoa: Stegozoa uses steganography to encode covert data into WebRTC video frames, so it

only uses a fraction of the video payload to establish the covert channel – this fraction must be minimal

so that an attacker with access to the video payload cannot detect the presence of a covert channel.

Therefore, the reduced throughput of 8.2 kbps is expected and composes a compromise to a stronger

threat model.

DeltaShaper: DeltaShaper encodes it’s covert data before the video engine performs any kind of

compression. To this end, it must encode its covert data into the video image bytes itself, and not

the already encoded video bytes. To avoid loss to compression algorithms and other compression

techniques, it must encode fewer bits to ensure the data is not corrupted. Consequently, it can only

provide a throughput of approximately 3.6 kbps, significantly lower of that of Protozoa or TorCloak, that

encode their data after the video has been encoded.

Protozoa: We also compare our values against Protozoa, as it has a similar threat model and com-

poses the basis of TorCloak’s WebRTC mechanism. We can see that, despite having similar basis,

encoding its information after the video has been encoded by the video engine and after any compres-

sion algorithm was been applied, there is a significant difference in throughput. This can be due to

multiple factors:

1. Service Provider: Whereby and Jitsi may allow their users to use different video bandwidths,

which limits the amount of covert data we can transfer.

2. WebRTC Infrastructure Changes: At the time of designing Protozoa, Whereby still used a P2P

model for most of its video calls. This means that the WebRTC traffic was not controlled by a

WebRTC gateway. The WebRTC gateway can impose some kind of bandwidth control on the

WebRTC traffic it forwards.

3. Video Codec: Protozoa was designed to operate under the VP8 video codec, unlike TorCloak

which uses the newer VP9 codec. We empirically verified that VP9 frames are usually much

smaller than VP8 frames: a frame with the same resolution, 1280x720, has a size of around 1585

bytes using the VP8 codec and only 88 bytes while using the VP9 codec. We can see that there
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is a significant different between the two values. This shows that VP9 is better optimized and can

highly reduce it’s size even in the same resolution. This could seriously harm our throughput as

well since they is not so much space as in the VP8 frames.

Despite this, we believe that with further optimizations in the encoding and decoding stages we can

achieve a similar throughput of Protozoa. Nontheless, the current throughput is sufficient for low to

medium bandwidth Internet tasks.

Summary

This chapter presented our experimental evaluation of TorCloak. It described the experiments that we

performed in order to assess the performance of the covert channel. TorCloak has shown to be able

to provide a reasonable throughput and latency need for typical medium-bandwidth internet tasks. The

next chapter concludes this document by reviewing the key points of this thesis and introducing the

future work.
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Chapter 7

Conclusions

Oppressive regimes around the world have made use of increasingly restrictive Internet censorship

techniques, in order to prevent their citizens from freely accessing or publishing content from and to the

Internet. To tackle this issue, Protozoa leverages the video streams of WebRTC for tunnelling covert

traffic. However, on its own, cannot perform the discovery of trusted proxies. It does not possess any

mechanism does matches users to proxies in an automated way .It relies on the user inside the censored

region to know a contact outside of the censored region, in whom he can trust and rely on to be his proxy.

In this thesis, we have presented: i) a full study and instrumentation framework for WebRTC, de-

signed to help developers more easily develop new multimedia covert streaming systems/tools and ii)

the design and implementation of TorCloak, a new Tor pluggable transport that leverages WebRTC video

streams to build a covert channel for Tor traffic. TorCloak is completely compatible with Tor’s Pluggable

Transport Specification be fully integrated into the Tor browser. It offers users an automated and safe

way to discover bridges (proxies), so that Tor users can covertly forward and receive Tor data.

The experimental evaluation conducted over TorCloak shows that a careful adaptation to newer We-

bRTC versions and video codecs enables the system to maintain a reasonable amount of throughput,

with an average of about 203 kbps.

7.1 Achievements

The major achievements of the present work is the design and implementation of TorCloak, a new Tor

pluggable transport that encodes Tor traffic on WebRTC video streams, creating a covert channel with

reasonable network performance for accomplishing common Internet tasks. Other main accomplish-

ments of this thesis encompass: i) a detailed study and instrumentation framework for the WebRTC; ii)

an experimental evaluation to analyze TorCloak’s performance and resource consumption.
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7.2 Future Work

Our efforts in building a working prototype of TorCloak have led us to understand that more work is

required to close a number of gaps in our implementation and to extend TorCloak to mobile platforms.

We identify four specific directions for future work: first, we would like to further explore the optimizations

on the encoding/decoding of data in the VP9 frame. Despite being usually of smaller size, you believe

that we can encode a lot more data into the VP9 frame. This will require us to verify if any more

frame quality control mechanism are placed, that could lead to some frames sent being dropped and

consequently dropping our overall throughput. Furthermore, we can further explore the size calculation

of each frame’s header size to understand if there is any more places we can fit data into. We can

empirically verify our channel’s maximum throughput buy counting how much available space we have

in each frame sent in a period of time and calculating the maximum theoretically throughput we can

achieve using the VP9 codec a Jitsi Meet.

Second, TorCloak’s mobile version must be developed and thoroughly tested. This will require a

thorough research and debugging in Android platforms, which are not as well documented for Pluggable

Transports as their desktop version counterparts. Nonetheless, as we pointed out, we already have a

defined plan for the development of this version of TorCloak.

Thirdly, we will complete an implementation of TorCloak’s desktop version that does not use Linux

network namespaces, but that instead uses sockets to transmit Tor cell data. At the moment of writing,

this version is not fully functional as some implementation difficulties must be resolved. This will enable

us to better integrate TorCloak with the remaining of the Tor infrastructure and code. It will also facilitate

the development of future versions of TorCloak, making sure it is compatible with most platforms.

Lastly, our whole bridge and broker infrastructure must be deployed and tested. We need to assess

the system’s scalability and how it can handle intense workloads from multiple users. This is key to

understand whether TorCloak can be deployed as a viable solution for the majority of Tor users located

within censored Internet regions.
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